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Vorwort 3

Vorwort zur 1. Auflage

Das vorliegende Buch fiir den Mathematikunterricht in Berufskollegs, Fachoberschulen, und Berufsfach-
schulen baut auf dem bewahrten Konzept der Fachreihe Mathematik fiir die Fachhochschulreife des Verlags
Europa-Lehrmittel auf.

Entsprechend den Vorgaben der Bildungsplane wird gro3er Wert auf die Selbstorganisation des Lernpro-
zesses, d. h. auf immer gro3er werdende Eigenstandigkeit und Eigenverantwortung der Schilerinnen und
Schiler im Erwerb von Wissen und Konnen gelegt. Aus diesem Grund sind mathematische Zusammenhan-
ge moglichst verstandlich und schiilernah formuliert. Die mathematischen Inhalte sind auf die besonderen
Anforderungen der Bildungsgéange, die zur Fachhochschulreife fiihren, abgestimmt und werden schuler-
gerecht vorwiegend anwendungsbezogen an praktischen Beispielen eingefiihrt und behandelt.

Zur Forderung des Interesses an der Mathematik sowie handlungsorientierter Themenbearbeitung enthalt
das Buch eine groRe Anzahl von Beispielen mit graphischen Darstellungen, anhand derer eine Vielzahl von
Aufgaben zu I6sen sind. Dabei sind die Aufgaben flir selbstorganisiertes Lernen in Partner- oder Gruppen-
arbeit ausgelegt und deren Ergebnisse sind auf der selben Buchseite angegeben, um eine eigenstandige
Lernerfolgskontrolle zu ermdglichen.

Ein didaktisch aufbereiteter Losungsband mit ausfiihrlichen Schritten zur Losung sowie die Formelsamm-
lung ,Formeln zu Mathematik fiir die Fachhochschulreife” ergdnzen das Buch. Das Buch enthalt in einer
Variante eine Einfliihrung in den grafikfahigen Taschenrechner (GTR).

Zum Ausgleich unterschiedlicher Vorkenntnisse, aber auch zum intensiven Wiederholen, beginnt das Buch
mit den Kapiteln Algebraische und Geometrische Grundlagen.

Die Hauptabschnitte des Buches sind

¢ Algebraische Grundlagen
e Geometrische Grundlagen
e Analysis

¢ Differenzialrechnung

¢ Integralrechnung

e Komplexe Rechnung

¢ Vektorrechnung

e Stochastik

¢ Matrizen

¢ Prifungsaufgaben
— Musteraufgaben
— Testen Sie lhr Wissen zur Priifung!

¢ Anwendungsbezogene Aufgaben

Uber Vorschlége, die zu einer Verbesserung des Buches fiihren, freuen sich Verlag und Autoren.

Frihjahr 2014 Die Verfasser
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Zitate beriihmter Wissenschaftler

~Erist ein Mathematiker und also hartnickig.”
Johann Wolfgang von Goethe (1748 bis 1832)

sDie erste Regel, an die man sich in der Mathematik
halten muss, ist exakt zu sein. Die zweite Regel ist,
klar und deutlich zu sein und nach Méglichkeit einfach.”

Lazare Nicolas Carnot (1753 bis 1823)

Es gibt Dinge, die den Menschen unglaublich erschei-
nen, die nicht Mathematik studiert haben.”
Archimedes (287 v.Chr. bis 212 v.Chr.)

-Manche Menschen haben einen Gesichtskreis vom
Radius Null und nennen ihn ihren Standpunkt.”
David Hilbert (1862 bis 1943)

sInder Mathematik gibt es keine Autoritdten. Das ein-
zige Argument fiir die Wahrheit ist der Beweis.”
Kasimir Urbanik, 1975

+Das Buch der Natur ist mit mathematischen Sym-
bolen geschrieben. Genauer: Die Natur spricht die
Sprache der Mathematik: die Buchstaben dieser
Sprache sind Dreiecke, Kreise und andere mathema-
tische Funktionen.”

Galileo Galilei (1564 bis 1642)

»ich kann die Bewegung der Himmelskdrper berechnen,
aber nicht das Verhalten der Menschen.”
Sir Isaac Newton (1643 bis 1727)

Wer die erhabene Weisheit der Mathematik tadelt,
nahrt sich von Verwirrung.”
Leonardo da Vinci (1452 bis 1519)

~Mathematik ist die einzige perfekte Methode, sich
selbst an der Nase herumzufiihren.”
Albert Einstein (1879 bis 1955)

.Die Mathematik muss man schon deswegen studie-
ren, weil sie die Gedanken ordnet.”
Michail W. Lomonossow (1711 bis 1765)

.Die Furcht vor der Mathematik steht der Angst er-
heblich ndher als der Ehrfurcht.”
Felix Auerbach (1856 bis 1933)

,Man darf nicht das, was uns unwahrscheinlich und un-
natirlich erscheint, mit dem verwechseln, was absolut
unmoglich ist.”

Carl Friedrich Gaul3 (1777 bis 1855)

+Es ist unglaublich, wie unwissend die studirende Ju-
gend auf Universitaten kommt, wenn ich 10 Minuten
rechne oder geometrisire, so schlaft % derselben
sanfft ein.”

Michail W. Lomonossow (1711 bis 1765)

sIm grofien Garten der Geometrie kann sich jeder nach
seinem Geschmack einen Straufs pfliicken.”
David Hilbert (1862 bis 1943)

~Duwolltest doch Algebra, da hast du den Salat.“
Jules Verne (1828 bis 1905)

,Beweisen mufd ich diesen Kis, sonst ist die Arbeit
unserios.”
Friedrich Wille (1935 bis 1992)

,Wer sich keinen Punkt denken kann, der ist einfach zu
faul dazu.”
Willhelm Busch (1832 bis 1908)

»Do not worry about your difficulties in mathematics, |
assure you that mine are greater.”
Albert Einstein (1879 bis 1955)

,Mit Mathematikern ist kein heiteres Verhaltnis zu
gewinnen.”
Johann Wolfgang von Goethe (1748 bis 1832)

»If A equals success, then the formula is A equals X
plus Y plus Z. X is work, Y is play. Z is keep your mouth
shut.”

Albert Einstein (1879 bis 1955)

Die Zitattexte sind in Originalschreibweise wiedergegeben.
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1.1 Einfiihrung

Entwicklung der Zahlen

Zahlen sind die Basis, ohne die unsere Rechenoperati-
onen wenig Sinn hatten. Damit die Menschen rechnen
konnten, mussten erst geeignete Zahlendarstellungen
und Zahlensysteme gefunden werden.

1. Finger und Zehen

Finger und Hande hatten einen entscheidenden Einfluss
auf die ersten Zahlensysteme.

Mit den 5 Fingern einer Hand, den 10 Fingern beider
Hande oder den insgesamt 20 Fingern und Zehen be-
diente man sich einer natirlichen Gliederung.

Eine 5er-Stufung findet man bei den Griechen, Mayas
und Chinesen.

Das 10er-System hatten die Agypter, Sumerer und Ba-
bylonier.

Die Mayas und die Inder benutzten auch eine 20er-Stu-
fung in ihrem Zahlensystem. Die Auswirkungen dieses
Systems findet man im englischen Pfund Sterling mit
seinen 20 Schillingen sowie in ahnlicher Form im Fran-
z6sischen und Déanischen.

2. Astronomie

Eine Ausnahme der seitherigen Stufung stellt die 60er-
Stufung dar, die bei den Sumerern und Babyloniern
vorgefunden wurde. Vermutlich hat sie ihren Ursprung
in der gut entwickelten Astronomie der Mesopotamier,
die das Jahr in 360 Tage eingeteilt hatten.

Daraus resultiert bis heute die Kreiseinteilung in
6 mal 60° = 360° sowie die Einteilung der Stunden in 60
Minuten und der Minuten in 60 Sekunden.

3. Romische Zahlen

Auf das unzweckmaliige romische Zahlensystem wird
hier nicht weiter eingegangen, da es zur Multiplikation
und Potenzierung und damit fiir das Rechnen mit gro-
Ben Zahlen vollig ungeeignet ist.

4. Indisch-arabische Zahlen

Die von uns heute verwendeten so genannten ,ara-
bischen” Zahlen kommen urspriinglich aus Indien. Sie
sind im Laufe der Jahrhunderte lber Vorderasien und
aus dem unter arabischem Einfluss stehenden Spanien
zu uns gelangt.

Kennzeichnend flir unser heutiges Zehnersystem ist die
Verwendung von zehn verschiedenen Ziffern innerhalb
eines Stellenwerts. Mit diesem Dezimalsystem ist ein
einfaches und schnelles Rechnen maglich. In Deutsch-
land wurde dieses System vor allem durch Adam Ries(e)
bekannt.

1 Algebraische Grundlagen

Bild 1: Fingerrechnen, wie es in alten Rechen-
biichern vorkam

Bild 2: Babylonische Keilschrift hat die 60 als Basis
(Sexagesimalsystem)

—==¥)0(7572

Indisch 3. Jh. v. Chr

1233YL2\V9o

Indisch 8. Jh.

| (395 J232°

Westarabisch 11. Jh.

| 27 X6 6890

Europaisch 15. Jh.

12345678909

Europaisch 16. Jh.

123456789020

Neugzeit 20. Jh.
Bild 3: Entwicklung der Dezimalzahlen bis heute
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1.2 Zahlen

Zahlenmengen

In der Mengenlehre werden die Zahlen als Elemente
von Zahlenmengen festgelegt.

Menge der natiirlichen Zahlen IN

Die Menge der natlrlichen Zahlen beinhaltet alle Zahlen,
die zum Abzadhlen benétigt werden. Sie enthélt alle po-
sitiven ganzen Zahlen einschlieBlich der Null (Tabelle 1).

N={0;1;2;3;4; ...}

Menge der ganzen Zahlen Z

Die Menge der ganzen Zahlen enthalt die naturlichen
Zahlen und alle negativen ganzen Zahlen. Damit ist die
Rechenoperation Subtraktion uneingeschrankt moglich.
Die Menge der ganzen Zahlen ohne Null ist Z*.

Z={..-4,-3;,-2,-1;0;1;2; 3; 4; ...}

Menge der rationalen Zahlen Q

Die Erweiterung der ganzen Zahlen um die Bruchzahlen
machen die Rechenoperation Division (auBer mit Null)
moglich.

Q={x|x=g/\pEZ;qEZ*}

Menge der reellen Zahlen R

Zusatzlich zu den rationalen Zahlen existieren am Zah-
lenstrahl Punkte, die nicht durch einen Bruch darstellbar
sind (Bild 1). Diese Zahlen nennt man irrationale Zahlen.

Beispiele fiir irrationale Zahlen sind: ; e; V2; 1g 2; ...

R = {x|x ist rational Vv x ist irrational}

Menge der komplexen Zahlen C

Gleichungen der Form x2 + 1 = 0 sind mit reellen Zah-
len nicht I6sbar. Aus diesem Grund hat man die Zahlen-
menge R um die imaginaren Zahlen erweitert.

Beispiele fiir imaginare Zahlen sind —i; 2i; ...2i bedeutet
zweimal die imaginare Zahl.

C={z|z=a+i-b; a,bER}

Komplexe Zahlen bestehen aus dem Realteil a und dem
imaginaren Anteil b.

Komplexe Zahlen kénnen wegen der imaginaren An-
teile nicht mehr am Zahlenstrahl dargestellt werden,
sondern werden in der komplexen Zahlenebene darge-
stellt.

Tabelle 1: Zusammenfassung der Zahlen-
mengen
Zahlen- | Sym- | Zahlenart Beispiele
menge | bol
Natur- Positive
liche IN ganze 0;1;2; ...
Zahlen Zahlen
Ganze Negative
Zahlen 7 und posi- v =2: =1: 0;
tive ganze | 1:.
Zahlen
Rati- Ganze 1 2
_l.9. 2.
onale Zahlenund | == "7 4r 37
Zahlen Q Bruch- 7.6
zahlen 8
Reelle Ratio- =5
Zahlen R nale und AV 3
irrationale | . 7:
Zahlen
Komp- Reelle und . .
lexe c imaginare | ~2i; 2+1;
Zahlen Zahlen -1+2i
| [ 11 —
T
-3 -2 - 0 115 3 4 R

Bild 1: Zahlenstrahl

//( \\\
N

Z

\§ J
N © )
R
\_ J
C

Bild 2: Zahlenmengen im Venndiagramm




1.4 Definitionsmenge

13

1.3 Terme und Gleichungen

Terme konnen Zahlen, z.B. -1; %; 2 oder Variablen, z.B.
a; x; y sein. Werden Terme durch Rechenoperationen
verbunden, so entsteht wieder ein Term.

Eine Gleichung besteht aus einem Linksterm T, und aus
einem RechtstermT,.

Tabelle 1: Rechenoperationen bei Gleichungen

Werden zwei Terme durch das Gleichheitszeichen
miteinander verbunden, so entsteht die Gleichung
T,=T.:

Beispiel 1: Gleichung
Stellen Sie die beidenTermeT;: x + 2 undT,: -4 als
Gleichung dar.

Loésung: x+2=-4

Werden an Gleichungen Rechenoperationen durchge-
fihrt, so muss auf jeder Seite der Gleichung diese Re-
chenoperation durchgefiihrt werden (Tabelle 1). Eine
Gleichung mit mindestens einer Variablen stellt eine
Aussageform dar. Diese Aussageform kann eine wahre
oder falsche Aussage ergeben, wenn den Variablen Wer-
te zugeordnet werden.

T=T,
Opera- | Allgemein | Beispiel
tion
Additi- x—-a=0 |+a
on T, +T=T,+4T|x-a+a=0+a
X=a
Sub- x+a=0 |-a
traktion | T -T=T,-T |x+a-a=0-a
X =-a
Multipli- %-x=1 |2
kation
TT=T,-T | 3-x:2=1-2
X=2
Division 2-x=4 [:2
n_T. 2.-x_4
T T 2 T2
T #0 X=2

Ein Wert x einer Gleichung heif3t Losung, wenn beim
Einsetzen von x in die Gleichung eine wahre Aussage
entsteht.

Tabelle 2: Einschrankung des Definitions-

Beispiel 2: Losung einer Gleichung

Ermitteln Sie die Lésung der Gleichung x + 2 =-4

Lésung: X+2=-4 | -2
X+2-2=-4-2
X=-6

1.4 Definitionsmenge

Die Definitionsmenge eines Terms kann einzelne Werte
oder ganze Bereiche aus der Grundmenge ausschliel3en
(Tabelle 2).

Beispiel 3: Definitionsmenge

Die Definitionsmenge der Gleichung

- 2 c ; :
1= Ty X € IR ist zu bestimmen.

Losung:

VX —

Die Definitionsmenge D, des Linksterms wird durch
die Wurzel eingeschrénkt. D, ={x|x =1 A x € R}

Die Definitionsmenge D, des Rechtsterms wird
durch den Nenner eingeschrankt. D, = R\{-1; 1}
Fir die Gesamtdefinitionsmenge D gilt:
D=D,ND,={x|x>1 A x €ER}

bereichs in R
Term Ein- Beispiel
schran-
kung
Bruch- T(x) = ;((t:
term 1+0
Z(x) x=
5= WX) N(x) # 0
X X #1
D = R\{1}
Wur- T(x)=Vx-1
zelterm XE? x-1=0
Tw="X |X g_rolSer =1
gleich 0
D={x[x=1AXxER}
Logarith- “o T(x) = logqg x
X
musterm SRer 0 x>0
Ti=logx | X 9OPCTEIn_ x>0 A xER}

Bei Aufgaben aus derTechnik oder Wirtschaft erge-
ben sich haufig einschrankende Bedingungen in
technischer, technologischer oder 6konomischer
Hinsicht. So kann die Zeit nicht negativ sein oder
die Temperatur nicht kleiner 273°C werden. Diese
eingeengte Definitionsmenge ist dann die eigent-
liche Definitionsmenge einer Gleichung.
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Uberpriifen Sie Ihr Wissen! = N

Beispielaufgaben [j
Zahlen

1. Geben Sie die Mengenbeziehungen der Zahlen-

mengen an (Bild 1). Z

2. Welche Aussagen sind wahr? )
a)-2€N b) € R ~ d
c)-25€Z d2ca - J ¢

Bild 1: Zahlenmengen im Venndiagramm

Terme und Gleichungen; Definitionsmenge
1. Lésungsmenge Loésungen Beispielaufgaben
Bestimmen Sie die Lésung fiir x € R. Zahlen

a) 4(2x - 6) = 2x — (x + 4)
b) (2x — 1)(3 - 2) = 6(x + 2)(x - 4) 1.NCZCQCRCC

c)Xt2 _2_-4 2. b) und d) sind wahr
5
2 -
d) 2 *ta=1 Terme und Gleichungen; Definitionsmenge
2. Lésen von Gleichungen 1.a)x = 27—0
Lésen Sie die Gleichungen nach allen Variablen
auf. b) x =-10
=14.12 c) x =28
a)h= 29t N )
1_1,1 X =2a
bl =%r *R&,
—
_2h.._ . [2h
3. Definitions- und Lésungsmenge 2.a)g="5it=5\7

Geben Sie die Definitionsmenge und die Losungs-

_Ri-Ry, _R-Ry, _R-R
menge an. b)R_R1+R2’R1_R2—R’R2_R1—R
a) 2x+2 = V4x-8 b)3x‘21=22‘J
X+ - 3.a) D ={x|x = 2}; L = {5}
b) D = R\{-2; 2); L={%}
Ubungsaufgaben

Berechnen und Lésen von Termen .
Lésungen Ubungsaufgaben

1. Berechnen Sie den Wert des Terms:

1. a) 303
a) 312 + (-28 + 19)
b) 312 — (28 + 19) b) 321
¢) 312 + [12 - (+28 — 19) + 28] — (18 + 24) c) 337
d) 18 -{16 - [23 - (=12 - 7 + 28) + 32] - 62} d) 110
2. Fassen Sie die Terme durch Auflésen der Klammern
zusammen und setzen Sie die angegebenen Werte
ein.
a) 14x — (28x + 19y) Setzen Siex=-2undy =3 2.a) 42x - 19y =-29
b) 3a + [12 b - (+28a - 19b)] - (-18a + 24b) b) -7a + 7b =-35
Setzen Siea=2und b =-3 c)-14r +23s =8
c)14r+(14s-12r) — (8r + 12s) + 12s — (8r — 9s) d) 28x + 92y + 32 = 252

Setzen Sier=6unds=4

d) 60 - {16x - [23y — (-12x - 7y + 28) + 32x] - 62y}
Setzen Siex=-2undy =3
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e) 18 +{-16y + [23x — (12y - 7x + 28) + 32y] - 62}
Setzen Siex=-2undy =3

f) 4r + 3(14s - 12r) — 2(8r + 12s) — 6(8r — 9s)
Setzen Sier=-6unds=4

g) 60x — 2 {16x — 3[23y - 4(-12x - 7y + 28)] - 62y}
Setzen Sie x=2undy =-3
3,.,5 5, 1 2

h) ZX+§V_2(§X_ZV) +§(4x—3y)—2x—3y
Setzen Siex=-2undy =3

4 3,.5 5, 1 2

i) X+ Y —3(€X —ﬁy) + §(4x -3y) +2x + 3y
Setzen Sie x =2 undy =-3

3. Multiplizieren Sie aus und fassen Sie zusammen.
a)3x -2y -z + 2x -5y - (-22) + 4x - (-2y) - (-5z)
b) -3x : 2y - (-z) - 2x - By - (-22z) + 4x - ( -3y) - (-4z)
¢) 2(a - b) + 3(2a + 3b) —3(a - 4b) + (a - 2b)5
d) (4-x)y +2) +2(3 +x)(2-y) - (x + 2){y - 2)
e)2(4-x)(2y +2) +(3+2x)(2-y) - (x-2)(y - 2)

4. Bestimmen Sie aus den Gleichungen die Lésungs-
menge L = {x}.
a) % —4=2
b)bx=2(x-7)-4
c)27+(3-x)=56x-4
d) 2(x+3)=4x-[2-(3x-2)]
e)2x-[6-(2x+3)]=5-b5x
f)Ix+1-[26-3x+(x-1))]=6x-13

Definitions- und Losungsmenge
5. Geben Sie die Definitionsmenge folgenderTerme an.

a) V2x + 100
1
V2x + 100

c) log, (x + 2)

6. Bestimmen Sie die Definitionsmenge und geben Sie

die Losung der Gleichung an.
-9_4
a) XX =§
15ac _ 9bc
b) X 7 6bd

¢) x+1-2=Vx-1

d)7+4-Vx+7=23

7. Bestimmen Sie die Lésung fiir x

2x-4 _x+5_4x+4 ,  x+6
a) =3 4 - 6 T2
2-x,2x-4 _3x+2 _x-5_,5-x
b) 557+ 557 21 - 14 T 7

2x—a X+a_4x+4 , x+6 a-x
T

4 6 12 3

Lésungen Ubungsaufgaben

2.e)30x +4y-72=-120
f) -96r + 72s = 864
g) 316x + 430y - 672 =-1330
1 ., _ _
h) _ZX —?y = 10,5

DT L By 1
i)gx+3y="5%

3. a) 26yxz
b) 74xyz
c¢) 10a + 9b
d) 4x — 4y — 4xy + 24
e) 2x + 15y - 7xy + 18

4.a) L ={27} b) L ={-6}
oL={ d) L =12}
L= [] 0L-(4)

5.a) x = -50
b) x > -50
c)x>-2

6.a) D =IR\{0}; x =45
b) D = R\{0}; b, d # 0; x = 10ad

¢) D={x|x = 1}g;x=15

d)D={x|x=-7}z;x=9

__45

7. a)x= 7

__19

b) x = =
_3a+14
c)x_—8
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1.5 Potenzen

1.5.1 Potenzbegriff

Die Potenz ist die Kurzschreibweise fiir das Produkt
gleicher Faktoren. Eine Potenz besteht aus der Basis
(Grundzahl) und dem Exponenten (Hochzahl). Der Ex-
ponent gibt an, wie oft die Basis mit sich selbst multipli-
ziert werden muss.

Beispiel 1: Potenzschreibweise
Schreiben Sie

a) das Produkt2-2-2-2 -2 als Potenz und
b) geben Sie den Potenzwert an.

Lésung: a)2:2-2-2-2=25 b) 25 =32

1.5.2 Potenzgesetze

Potenz mit negativem Exponenten

Eine Potenz, die mit positivem Exponenten im Nenner
steht, kann auch mit einem negativen Exponenten im
Zahler geschrieben werden. Umgekehrt kann eine Po-
tenz mit negativem Exponenten im Zahler als Potenz mit
positivem Exponenten im Nenner geschrieben werden.

Beispiel 2: Exponentenschreibweise

Schreiben Sie die Potenzterme a) 273; b) 102 mit
entgegengesetztem Exponenten und geben Sie den
Potenzwert an.

Losung:
3_1_1_

a) 2 _23_8_0,125
=_ 1 _ 1 _

b) 10 _103_1000_0,001

Beispiel 3: Physikalische Einheiten

Schreiben Sie folgende physikalischen Benen-
nungen mit umgekehrtem Exponenten.

a)m-s32 b)U-min"' ¢ T
Lésung:

.g2=Mm .min-t=_Y_ m_ . el
alm-s =g b)U-minT=—=-  c¢c)g=m-s

Addition und Subtraktion

Gleiche Potenzen oderVielfaches von gleichen Potenzen,
die in der Basis und im Exponenten Ubereinstimmen,
lassen sich durch Addition und Subtraktion zusammen-
fassen (Tabelle 1).

Beispiel 4: Addition und Subtraktion von Potenz-
termen

Die Potenzterme 3x3 + 4y? + x3 — 2y? + 2x3 sind

zusammenzufassen.

Lésung: 3x3+ 4y? + x3 - 2y?+ 2x3
=(3+1+2)x3+(4-2)y? =6x3+ 2y?

a-a-a-a-...-a=a"
-_ = -t =
n-Faktoren
1
a"=_5

a Basis;a>0
b Potenzwert

n Exponent

Tabelle 1: Potenzgesetze

Regel, Definition

algebraischer
Ausdruck

Addition und Subtrak-
tion

Potenzen diirfen addiert
oder subtrahiert wer-
den, wenn sie densel-
ben Exponenten und
dieselbe Basis haben.

Multiplikation

Potenzen mit gleicher
Basis werden multipli-
ziert, indem man ihre
Exponenten addiert und
die Basis beibehalt.

Potenzen mit gleichen
Exponenten werden
multipliziert, indem man
ihre Basen multipliziert
und den Exponenten
beibehalt.

Division

Potenzen mit gleicher
Basis werden dividiert,
indem man ihre Expo-
nenten subtrahiert und
die Basis beibehalt.

Potenzen mit gleichem
Exponenten werden
dividiert, indem man
ihre Basen dividiert
und den Exponenten
beibehalt.

a" n. g-m n-m
a—m=a -a =a

o= o)

Potenzieren

Potenzen werden po-
tenziert, indem man die
Exponenten miteinan-
der multipliziert.

(am)"=amn

Definition

Jede Potenz mit dem
Exponenten null hat den
Wert 1.

a’=1;flra#0
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Multiplikation von Potenzen

Potenzen mit gleicher Basis werden multipliziert, indem
man die Potenzen als Produkt schreibt und dann aus-
multipliziert oder indem man die Exponenten addiert.

Beispiel 1: Multiplikation

Berechnen Sie das Produkt 22 - 2% und geben Sie
den Potenzwert an.

Lésung:

22.28=(2-2)-(2:-2-2)=32

oder 22 -23=22+3=25=32

Beispiel 2: Flachen- und Volumenberechnung

a) Die Flache des Quadrates mit a = 2 m (Bild 1) und

b) das Volumen des Wiirfels fliir a = 2 m ist zu be-
rechnen.

Losung:
a)A=za-a=a'-a'=a'*1=a?
A=2m:-2m=2-2m-m=22m2=4m?
b)V:a.a.a=a1.aT.a1=a1+1+1=a3
=2m-:-2m:-2m=2:-2-2m-m-m
=22m3=8m?d

Division von Potenzen

Potenzen mit gleicher Basis werden dividiert, indem
man den Quotienten in ein Produkt umformt und dann
die Regeln flr die Multiplikation von Potenzen anwen-
det oder indem man den Nennerexponenten vom Zah-
lerexponenten subtrahiert.

Beispiel 3: Division

5,
Der Potenzterm % ist zu berechnen.

Lésung:
25 1 - -
§=25-§=25-23=25 5=22=4

oder§—§=25-3=22=4

Potenzieren von Potenzen

Potenzen werden potenziert, indem man das Produkt
der Potenzen bildet und die Regeln fiir die Multiplikati-
on von Potenzen anwendet oder indem man die Expo-
nenten multipliziert.

Beispiel 4: Potenzieren
Berechnen Sie die Potenzterme
a) (2° b) (-3)? c)-3?
Lésung:
a) (22)3 =92.92.92_92+2+2 _ 96 — 64
oder (22)° = 223 = 26
b) (-3)2=(-3)-(-3)=9 ¢)-32=—3:3)=-9

(-a)? = a? -a?=-(a’)

a Basis;a>0

Flache Volumen
I
|
[
a2 = © ;@
-
Z 2
a a
I
|
I 93
22 ~ o~ | 2
//-__
9
2 2

Bild 1: Flache und Volumen

Werte
<1 | >1

10 100 1000
| |

10

Bild 2: Zehnerpotenzen

Tabelle 1: Zehnerpotenzen, Schreibweise

ausgeschriebene Zahl Po- Vorsatz bei
tenz | Einheiten
1000000000 10° G |(Giga)
1000000 106 M |(Mega)
1000 103 k | (Kilo)
100 102 h | (Hekto)
10 10’ da | (Deka)
1 100 -
0,1 107" d | (Dezi)
0,01 1072 ¢ |(Centi)
0,001 1073 m | (Milli)
0,000001 106 p | (Mikro)
0,000000001 10° n |(Nano)

Potenzen mit der Basis 10 (Zehnerpotenzen)

Potenzen mit der Basis 10 werden sehr haufig als
verkiirzte Schreibweise fiir sehr kleine oder sehr
groRRe Zahlen verwendet. Werte gréRBer 1 kon-
nen als Vielfaches von Zehnerpotenzen mit posi-
tivem Exponenten, Werte kleiner 1 als Vielfaches
von Zehnerpotenzen mit negativem Exponenten
dargestellt werden (Bild 2 und Tabelle 1).

Beispiel 5: Zehnerpotenzen

Schreiben Sie die Zehnerpotenzen
a)20 um b)10ml c¢) 3 kHz

Lésung:

a)20-10®m b)10-1032 ¢)3-10%Hz
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1.6.2 Rechengesetze beim Wurzelrechnen

1.6 Wurzelgesetze

1.6.1 Wurzelbegriff

Das Wurzelziehen oder Radizieren (von lat. radix = Wur-
zel) ist die Umkehrung des Potenzierens. Beim Wurzel-
ziehen wird derjenige Wurzelwert gesucht, der mit sich
selbst multipliziert den Wert unter der Wurzel ergibt.
Eine Wurzel besteht aus dem Wurzelzeichen, dem Radi-
kanden unter dem Wurzelzeichen und dem Wurzelexpo-
nenten. Bei Quadratwurzeln darf der Wurzelexponent 2
weggelassen werden = ‘a=1a.

Eine Wurzel kann auch in Potenzschreibweise darge-
stellt werden. Deshalb gelten bei Wurzeln auch alle
Potenzgesetze.

Beispiel 1: Potenzschreibweise und Wurzelziehen
Der Wurzelterm V4 = (4 ist

a) in Potenzschreibweise darzustellen und

b) der Wert der Wurzel zu bestimmen.

Lésung:

a)id="4"=4 b)l&=4=2;denn2-2=4

1.6.2 Rechengesetze beim Wurzelrechnen

Addition und Subtraktion

Gleiche Wurzeln, die im Wurzelexponenten und im Ra-
dikand Ubereinstimmen, dirfen addiert und subtrahiert
werden (Tabelle 1).

Beispiel 2: Addition und Subtraktion von Wurzeln
Die Wurzelterme 3Va, —23\55, +2Va, +43v‘5 sind zu-
sammenzufassen.

Losung:

3va- 23\@Es+ 2/@a+4b=(3+2)a+(4-2'b
=5/a+2\b

Multiplikation und Division von Wurzeln

Ist beim Wurzelziehen der Radikand ein Produkt, so
kann entweder aus dem Produkt oder aus jedem ein-
zelnen Faktor die Wurzel gezogen werden. Bei einem
Quotienten kann die Wurzel auch aus Zahlerterm und
Nennerterm gezogen werden (Tabelle 1).

Beispiel 3: Multiplikation und Division

Berechnen Sie aus den Wurzeltermen V9 - 16 und \%
den Wert der Wurzel.

Lésung:
V916 =144 =12
oder V9-16=19-\16=3-4=12

\% =0,75
9 9 _
oder 6= 164" 0,75

n— "m m
va=x;a=0 va"=an,a=0
n Wurzelexponent a Basis
x  Wurzelwert m,% Exponent

Tabelle 1: Wurzelgesetze

Regel

algebraischer

Ausdruck

Addition und Subtraktion

Wourzeln dirfen addiert
und subtrahiert werden,
wenn sie gleiche Expo-
nenten und Radikanden
haben.

r-Yaxs-\a

=(r=s)-Va

Multiplikation

Ist der Radikand ein
Produkt, kann die Wurzel
aus dem Produkt oder
aus jedem Faktor gezogen
werden.

Division

Ist der Radikand ein Quo-
tient, kann die Wurzel aus
dem Quotienten oder aus
Zahler und Nenner gezo-
gen werden.

Potenzieren

Beim Potenzieren einer
Wurzel kann auch der Ra-
dikand potenziert werden.

(Va)m =

n—-
laMm
va

- - n;
Allgemeine Losung des Wurzelterms Va"
N . n— . .
Bei der Losung des Wurzelterms va" sind zwei

Falle zu unterscheiden:
gerader Exponent:
ungerader Exponent:

n—-~—
va" =

lal

n—-
va"=a

Die Losung einer Quadratwurzel ist immer po-

sitiv.

Beispiel 4: Zwei Lésungen

Losung:
2—

Va® = |a|
Fall 1:
Fall 2:
Beispiel 1:

afira>0
-afira<o0

Fiir |a] = 2 gilt \(-2)2 = (22 = 4 = 2

2— .
Warum miissen beim Wurzelterm Va? zwei
Falle unterschieden werden?
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1.6.3 Wurzelziehen mit dem Heron-Verfahren

Wourzelzahlen sind im Allgemeinen irrationale Zahlen,
d.h. sie lassen sich nicht durch einen Bruch darstellen.
Da sie beliebig viele Nachkommastellen haben, war ihre
handische Berechnung schwierig. Die Berechnung mit-
hilfe eines Naherungs-Verfahrens war aber schon den
Griechen und noch friiher den Babyloniern bekannt
(Bild 1).

Beispiel 1: Wurzel handisch ermitteln

Ermitteln Sie die Wurzel der Zahl 10 auf zwei Stellen
nach dem Komma genau.

Lésung:
1. Abschéatzung:
3<V10<4,denn32=9<10<16=42

2. Durch Probieren:
3,1 <410 < 3,2,
denn 3,12=9,61 < 10 < 10,24 = 3,22

3. Mit gr6Berer Miihe findet man:
3,16 < V10 < 3,17, denn
3,162 =9,9856 < 10 < 10,0489 = 3,172

Einen schnelleren und effektiveren Weg zur Ermittlung
einer Quadratzahl liefert ein Naherungsverfahren, das
nach dem griechischen Mathematiker Heron' benannt
wurde. Bei diesem Verfahren beginnt man mit einer
naturlichen Zahl x,, die in der ndheren Umgebung der
Quadratwurzel va liegt. Man berechnet der Reihe nach
immer mit dem gleichen Schema Briiche, die sich der
gesuchten Wurzelzahl immer genauer annahern.

Beispiel 2: Ermittlung der Quadratwurzel mit dem
Heron-Verfahren

Ermitteln Sie die Wurzel der Zahl 10 auf vier Stellen
nach dem Komma genau mit dem Verfahren von
Heron.

Lésung:
1. Naherung:
mit dem gewahlten Startwert: x, = 3
2. Naherung:
Mit der Formel x, = (x1 + )%) (2= % 5 f"XJ folgt:

X, = (3 +13—°) 12= (g+%) =19 -3,1666666...

3. Naherung:
10
_ al.g_ (%, _a |_(19,19)_19, 30
X3_(X1+X2)'2_‘2+2-X2 =2 3)‘12+19
=19-19+30.12_721 . 3,162280...

12-19 228
4.Taschenrechnerwert: V10 =~ 3,16227766...

" Heron von Alexandria (griechischer Mathematiker und Mechaniker, 1.Jh.n.Chr.)

Bestimmung der Quadratwurzel aus a:
al\.
Xy = (x1 + X—1) 12
a\.o. a\.o.
x3=(x2+x—2) 12; x4=(x3+x—3).2,
X5 = ...

Allgemein:

xn+1=(xn+xin):2; aEN*nEN

x, Startwert

X, Naherungswert

n

a  Numerus der Quadratwurzel

Bild 1: Babylonische Keilschrifttafel zur Berechnung
der Quadratwurzel

[ reite xo=1,

Lange yp=9

- Breite = 1'8

Langey;=5

A=Xg"Yo

Breite x,= 2,6

Langey,=3,4

Bild 2: Geometrische Erlauterung des Heron-
verfahrens

Beim Heronverfahren wird von einem Qua-
drat mit dem Flacheninhalt A und der Kan-
tenlinge VA ausgegangen. Nimmt man ein
Rechteck (Bild 2) mit der Flache 9 (FE), so
kann dieses durch Verkirzung der Lange vy,
und Verlangerung der Breite x, in Schritten
an den Wert 3 angenahert werden. Die neue
Lange y, = 5 erhalt man mit dem Mittelwert

_X*Yo_1+9
T2 T 2
derholung dieser Schritte kann die gewlinschte
Genauigkeit erreicht werden.

=5 sowie x; = yA1. Durch Wie-

Das Heron-Verfahren liefert schnell gute Na-
herungswerte fur die Quadratwurzel.




20 Aufgaben: 1 Algebraische Grundlagen

Uberpriifen Sie Ihr Wissen!

Beispielaufgaben Lésungen Beispielaufgaben
Wurzelziehen mit dem Heron-Verfahren Wurzelziehen mit dem Heron-Verfahren
1. Bestimmen Sie die Quadratwurzel durch Anwen- 1.a)1,41...
dung mit dem Heron-Verfahren auf vier Stellen b) 1,73
h dem K . S
na(f‘_ em orzma _ ¢) 2,236068...
a) V2 b) V3 c) V5
2. Ein Rechteck mit den Seitenlangen a=2 und b =4 2. a) siehe Losungsbuch
soll in ein flachengleiches Quadrat umgewandelt b) 212 =2,8284271...
werden.
a) Versuchen Sie Uber einen grafischen Ansatz das
Heron-Verfahren auf das Problem anzuwenden.
b) Welche Kantenldnge hat das Quadrat?
Ubungsaufgaben
1. Stellen Sie die Gleichung oder Formel nach der gefor-
derten Grof3e um.
Dose
a)d,=d+2m; Umstellen nach m a m-H M m-H
h= M-mVm~ M-m
b) Ry = Ry(1 + o - AD); Umstellen nach AY Getrink
¢) AR=Ry5 - a- (9,-9); Umstellen nach ¥,
H
d)yz, = 2R Umstell hR
L=RARY mstellen nach R, h
e)A= d%“; Umstellen nach d B
_ _m-Vv2
fitan o = g-m-r’ Umstellen nach v h Hohe des Schwerpunkts m Masse der Dose
1 1 1 Uber dem Boden
) Tty Umstellen nach g M Masse der Dose mit H Hohe der Dose
Inhalt
h)i= U R Umstellen nach R
+ R
" Bild 1: Schwerpunkt in Abhédngigkeit des Inhalts
jv=-S_4+_5_ Umstellen nach s
t+a t-a
L\ S—S;  S,-5; .. -
J) P ik e Umstellen nach t, Loésungen Ubungsaufgaben
1 2 1
Rx‘)
da_ d szo—
k) Der Abstand des Schwerpunktes vom Boden einer lajm=—5 b) AD = =5—
mit Flissigkeit geflillten Dose lasst sich mit der AR -Z\R,
Formel ¢l 9, ={}2_Rzo'0‘ d) RL:ZL_RC
=|\T_;\¥‘|\r/|n_: e)d=\f% fly=\r-g-tana
. . . _b-f _ n-U
beschreiben (Bild 1). Stellen Sie nach H um. glg= bt h)R = T
. v(t? - a?) . (S2 = 81) + 15(S1—8)
= t == 7
Gleichungen i)s 2t i, S;—8
2. Bestimmen Sie aus den Gleichungen die Losung k) H = ((Mm_m))h
ym = 1)-m

a)(x+2)2+6=x2+20

2.a)x=25 b) x =1
b)4(171-:20x)=8 a) x ) x=4




