KAPITEL 3
Speichern und Abrufen

Wer Ordnung halt, ist nur zu faul zum Suchen.

— Deutsches Sprichwort

Eine Datenbank muss grundsitzlich zwei Dinge tun: Wenn man ihr Daten tiber-
gibt, sollte sie die Daten speichern, und wenn man sie spiter wieder abfragt, sollte
sie die Daten zuriickgeben.

In Kapitel 2 haben wir Datenmodelle und Abfragesprachen besprochen — d.h. das
Format, in dem Sie (der Anwendungsentwickler) der Datenbank Thre Daten anbie-
ten, und den Mechanismus, mit dem Sie spiter danach fragen kénnen. In diesem
Kapitel besprechen wir das Gleiche aus dem Blickwinkel der Datenbank: Wie kon-
nen wir die iibergebenen Daten speichern und wie konnen wir sie wiederfinden,
wenn wir danach gefragt werden?

Warum sollten Sie sich als Anwendungsentwickler darum kiimmern, wie die Da-
tenbank das Speichern und Abrufen intern realisiert? Wahrscheinlich werden Sie
nicht Thre eigene Storage-Engine von Grund auf neu implementieren, doch von
den vielen verfiigbaren Storage-Engines miissen Sie eine auswdhlen, die fiir Thre
Anwendung geeignet ist. Um eine Storage-Engine so zu konfigurieren, dass sie die
vorgesehene Arbeitsbelastung gut bewiltigt, brauchen Sie eine grobe Vorstellung
davon, was die Storage-Engine hinter den Kulissen macht.

Insbesondere besteht ein grofRer Unterschied zwischen Storage-Engines, die fur
transaktionale Arbeitslasten optimiert sind, und denjenigen, die fiir Datenanaly-
seaufgaben optimiert sind. Auf diesen Unterschied gehen wir spiter ein im Ab-
schnitt »Transaktionsverarbeitung oder Datenanalyse?« auf Seite 97, und im Ab-
schnitt »Spaltenorientierte Speicherung« auf Seite 103 befassen wir uns mit einer
Familie von Storage-Engines, die fiir Analytik optimiert ist.

Zu Beginn dieses Kapitels sprechen wir aber tiber Storage-Engines von Datenban-
ken, mit denen Sie wahrscheinlich vertraut sind. Dabei geht es um herkommliche
relationale Datenbanken und auch einen Grofteil der sogenannten NoSQL-Da-
tenbanken. Wir untersuchen zwei Familien von Storage-Engines: protokollstruk-

turierte Storage-Engines und seitenorientierte Storage-Engines wie zum Beispiel
B-Biume.

Datenstrukturen, auf denen lhre Datenbank beruht

Sehen Sie sich die einfachste Datenbank der Welt an, die in Form zweier Bash-
Funktionen implementiert ist:

#1/bin/bash

db_set () {
echo "$1,$2" >> database
}

db get () {
grep ""$1," database | sed -e "s/"$1,//" | tail -n 1

Diese beiden Funktionen implementieren einen Schliissel-Wert-Speicher. Mit dem
Aufruf db_set key value konnen Sie den Schliissel key und den Wert value in der
Datenbank speichern. Schliissel und Wert konnen (fast) alles sein, was Sie moch-
ten — zum Beispiel konnte der Wert ein JSON-Dokument sein. Dann kénnen Sie
mit dem Aufruf db_get key nach dem neuesten Wert suchen, der diesem Schliissel
zugeordnet ist, und ihn zuriickgeben.

Und es funktioniert:

$ db_set 123456 '{"name":"London","attractions":["Big Ben","London Eye"]}'
$ db_set 42 '{"name":"San Francisco","attractions":["Golden Gate Bridge"]}'

$ db_get 42

"name":"San Francisco","attractions":["Golden Gate Bridge"]}

Das zugrunde liegende Speicherformat ist sehr einfach: eine Textdatei, in der jede
Zeile ein Schliissel-Wert-Paar, getrennt durch ein Komma, enthilt (etwa wie eine
CSV-Datei, ohne Beriicksichtigung von Escape-Zeichenfolgen). Jeder Aufruf von
db_set fiigt die Daten an das Ende der Datei an. Wenn Sie also einen Schliissel
mehrmals aktualisieren, werden die alten Versionen des Werts nicht {iberschrie-
ben — Sie miissen nach dem letzten Vorkommen eines Schliissels in einer Datei su-
chen, um den neuesten Wert zu finden (daher das tail -n 1 in der Funktion db_
get):

$ db_set 42 '{"name":"San Francisco","attractions":["Exploratorium"]}'

$ db_get 42

"name":"San Francisco","attractions":["Exploratorium"]}

$ cat database
123456, {"name":"London", "attractions":["Big Ben","London Eye"]}

42,{"name":"San Francisco","attractions":["Golden Gate Bridge"]}

42,{"name":"San Francisco","attractions":["Exploratorium"]}

74 | Kapitel 3: Speichern und Abrufen

Unsere Funktion db_set zeigt eigentlich eine gute Performance fiir etwas so Einfa-
ches, weil das Anfiigen an eine Datei im Allgemeinen sehr effizient vonstatten
geht. Ahnlich dem, was db_set tut, verwenden viele Datenbanken intern ein Proto-
koll, das als Datei implementiert ist, an die nur am Ende angeftigt werden kann.
Echte Datenbanken haben mit mehr Problemen zu tun (zum Beispiel Nebenliufig-
keit steuern, Festplattenplatz freigeben, damit das Protokoll nicht unendlich
wichst, und Fehler sowie unvollstindig geschriebene Datensitze behandeln),
doch das Grundprinzip ist das gleiche. Protokolle sind unglaublich niitzlich, und
wir werden sie im Rest dieses Buchs noch mehrmals antreffen.

Unter Protokoll (englisch: log, im Sinne eines Logbuchs) versteht
man oftmals ein Anwendungsprotokoll, in das eine Anwendung
Text ausgibt, um Ereignisse zu beschreiben. In diesem Buch verwen-
den wir Protokoll in einem allgemeiner gefassten Sinn: als Folge von
Datensitzen, die ausschliefflich angeftigt werden. Die Daten miissen
nicht notwendigerweise im Klartextformat vorliegen, sondern kon-
nen auch binir codiert und nur zum Lesen durch andere Programme
vorgesehen sein.

Andererseits legt unsere Funktion db_get eine furchtbare Performance an den Tag,
wenn die Datenbank eine grofe Anzahl von Datensitzen speichert. Bei jeder Su-
che nach einem Schliissel muss db_get die gesamte Datenbankdatei von Anfang
bis Ende durchgehen und nach den Vorkommen des Schliissels suchen. Im
Sprachgebrauch der Algorithmenanalyse sagt man, dass die Kosten einer solchen
Suche O(n) betragen: Wenn Sie die Anzahl der Datensitze n in Threr Datenbank
verdoppeln, dauert die Suche doppelt so lange. Das ist nicht gut.

Um effizient den Wert fiir einen bestimmten Schliissel in der Datenbank zu fin-
den, brauchen wir eine andere Datenstruktur: einen Index. In diesem Kapitel se-
hen wir uns ein paar Indexstrukturen an und vergleichen sie. Prinzipiell liegt ihnen
die Idee zugrunde, zusitzliche Metadaten mitzufiithren, die als Wegweiser dienen
und Thnen helfen, die gewiinschten Daten aufzufinden. Wenn Sie dieselben Daten
auf verschiedene Art und Weise suchen wollen, brauchen Sie gegebenenfalls meh-
rere verschiedene Indizes, die verschiedene Bestandteile der Daten abdecken.

Ein Index ist eine zusdtzliche Struktur, die aus den primiren Daten abgeleitet wird.
Viele Datenbanken erlauben es Thnen, Indizes hinzuzufiigen und zu entfernen.
Dies wirkt sich nicht auf den Inhalt der Datenbank aus, sondern beeinflusst nur
die Performance von Abfragen. Die Verwaltung zusitzlicher Strukturen bringt spe-
ziell bei Schreibvorgingen einen Overhead mit sich. Beim Schreiben ist es schwer,
die Performance eines einfachen Anfiigens an eine Datei zu tibertreffen, weil das
die einfachste mogliche Schreiboperation ist. Jede Art von Index bremst Schreib-
vorginge normalerweise ab, weil der Index bei jedem Schreiben von Daten eben-
falls aktualisiert werden muss.

Dies ist eine wichtige Abwigung in Speichersystemen: Gut gewihlte Indizes be-
schleunigen Leseabfragen, aber jeder Index bremst die Schreibvorginge. Aus die-

Datenstrukturen, auf denen Ihre Datenbank beruht | 75

sem Grund indizieren Datenbanken standardmifRig nicht einfach alles, sondern
verlangen von Thnen — dem Anwendungsentwickler oder Datenbankadministrator —,
die Indizes manuell auszuwihlen, wobei Sie Thr Wissen iiber die typischen Ab-
fragemuster der Anwendung einflieflen lassen. Dann kénnen Sie die Indizes aus-
wihlen, von denen Thre Anwendung am meisten profitiert, ohne mehr Overhead
als notwendig einzubringen.

Hash-Indizes

Beginnen wir mit Indizes fiir Schliissel-Wert-Daten. Dies ist nicht die einzige Art
von Daten, die man indizieren kann, aber sie kommt hiufiger vor, und dieser In-
dex ist ein niitzlicher Baustein fiir komplexere Indizes.

Schliissel-Wert-Speicher dhneln stark dem Worterbuchtyp (Dictionary), den Sie in
den meisten Programmiersprachen finden und der normalerweise als Hashtabelle
(engl. Hash Map) implementiert ist. Hashtabellen werden in vielen Lehrbiichern
fiir Algorithmen beschrieben [1, 2], sodass wir hier nicht im Detail auf ihre Ar-
beitsweise eingehen. Da wir bereits tiber Hashtabellen fiir unsere speicherinternen
Datenstrukturen verfiigen, sollten wir dann nicht auch unsere Daten auf der Fest-
platte damit indizieren?

Nehmen wir an, in unserem Datenspeicher werden die Eintrige wie im vorherigen
Beispiel immer nur an eine Datei angefiigt. Dann sieht die einfachste Indizierungs-
strategie so aus: Fiihren einer speicherinternen Hashtabelle, in der jeder Schliissel
auf einen Byteoffset in der Datendatei abgebildet wird — dem Ort, an dem der
Wert gefunden werden kann, wie es Abbildung 3-1 veranschaulicht. Immer wenn
Sie ein neues Schliissel-Wert-Paar an die Datei anfiigen, aktualisieren Sie auch die
Hashtabelle, sodass sie den Offset der eben geschriebenen Daten widerspiegelt
(dies funktioniert sowohl beim Einfiigen von neuen Schliisseln als auch beim Ak-
tualisieren vorhandener Schliissel). Wenn Sie einen Wert nachschlagen méchten,
suchen Sie in der Hashtabelle den Offset auf die Datendatei heraus, suchen diese
Position auf und lesen den Wert.

Dies mag grob vereinfachend erscheinen, doch der Ansatz ist brauchbar. Tatsich-
lich ist dies im Wesentlichen das, was Bitcask (die Standard-Storage-Engine in
Riak) tut [3]. Bitcask bietet hochperformante Lese- und Schreiboperationen, die
der Forderung unterliegen, dass alle Schliissel in den verfiigbaren Arbeitsspeicher
(RAM) passen, da die Hashtabelle ginzlich im Arbeitsspeicher gehalten wird. Die
Werte diirfen mehr Platz belegen als Arbeitsspeicher vorhanden ist, da sie sich von
der Festplatte mit lediglich einem einfachen Suchvorgang laden lassen. Falls sich
dieser Teil der Datendatei bereits im Cache des Dateisystems befindet, ist fiir ein
Lesen iiberhaupt keine Festplatten-E/A erforderlich.

Eine Storage-Engine wie Bitcask ist gut geeignet fiir Situationen, in denen der
Wert fiir jeden Schliissel hiufig aktualisiert wird. So kénnte der Schliissel die URL
eines Katzenvideos sein und der Wert eine Zahl, die angibt, wie oft es wiedergege-

76 | Kapitel3: Speichern und Abrufen

ben wurde (jedes Mal inkrementiert, wenn jemand auf die Play-Schaltfliche
klickt). Bei einer derartigen Arbeitsbelastung gibt es jede Menge Schreibvorginge,
wobei aber die Anzahl unterschiedlicher Schlissel iiberschaubar bleibt — man hat
eine grofle Anzahl von Schreibvorgingen pro Schliissel, doch es ist praktikabel,
alle Schliissel im Arbeitsspeicher zu halten.

Schlissel Byteoffset | Speicherinterne Hashtabelle
123456 0
42 % ?
/ Protokollstrukturierte Datei auf der Festplatte
(jedes Kastchen ist ein Byte)

123456 , {("name " : "London" , " attra
ctlon’ﬁ:["Big Ben" , " London E|ly e
"]}\nYZ,("name":"San F rancisco"
,/"lat tractions" :["|lGolden G a t|e B

riidge"™ 11!\

Abbildung 3-1: Ein Protokoll von Schliissel-Wert-Paaren wird in einem CSV-dhnlichen Format
gespeichert, indiziert mit einer speicherinternen Hashtabelle.

Da wir wie bisher beschrieben ausschliefflich an eine Datei anfiigen, stellt sich die
Frage: Wie vermeiden wir, dass uns letztendlich der Festplattenplatz ausgeht?
Eine gute Losung ist es, das Protokoll in Segmente einer bestimmten GrofRRe aufzu-
teilen, indem man eine Segmentdatei schlielt, wenn sie eine bestimmte Grofe er-
reicht hat, und die nichsten Schreibvorginge in eine neue Segmentdatei ausfiihrt.
Diese Segmente konnen wir dann komprimieren, wie Abbildung 3-2 zeigt. Kompri-
mierung bedeutet, doppelte Schliissel aus dem Protokoll zu entfernen und nur die
letzte Aktualisierung fur jeden Schliissel zu behalten.

Datendateisegment

mew: 1078 purr: 2103 purr: 2104 mew: 1079 mew: 1080 mew: 1081

purr: 2105 purr: 2106 purr: 2107 yawn: 511 purr: 2108 mew: 1082

Komprimierung

Komprimiertes Segment

yawn: 511 mew: 1082 purr: 2108

Abbildung 3-2: Komprimierung eines Schliissel-Wert-Aktualisierungsprotokolls (das zdhlt, wie
oft jedes Katzenvideo wiedergegeben wurde), wobei nur der neueste Wert fiir jeden Schliissel
beibehalten wird

Datenstrukturen, auf denen Ihre Datenbank beruht | 77

Da zudem die Segmente beim Komprimieren deutlich kleiner werden (unter der
Annahme, dass ein Schliissel im Durchschnitt mehrmals innerhalb eines Segments
iiberschrieben wird), konnen wir wihrend der Komprimierung auch mehrere Seg-
mente zusammenfithren (siehe Abbildung 3-3). Da Segmente niemals geindert
werden, nachdem sie geschrieben wurden, schreiben wir das zusammengefiihrte
Segment in eine neue Datei. Das Zusammenfithren und Komprimieren von einge-
frorenen Segmenten kann in einem Hintergrund-Thread erfolgen. Und wihrend
das geschieht, konnen wir Lese- und Schreibanfragen wie tiblich weiterhin bedie-
nen, indem wir die alten Segmentdateien verwenden. Wenn das Zusammenfithren
abgeschlossen ist, leiten wir die Leseanfragen auf die neuen, zusammengefithrten
Segmente anstelle der alten Segmente — und dann konnen die alten Segmentda-
teien einfach geldscht werden.

Datendateisegment 1

mew: 1078 purr: 2103 purr: 2104 mew: 1079 mew: 1080 mew: 1081

purr: 2105 purr: 2106 purr: 2107 yawn: 511 purr: 2108 mew: 1082

Datendateisegment 2

purr: 2109 purr: 2110 mew: 1083 scratch: 252 | mew: 1084 mew: 1085

purr: 2111 mew: 1086 purr: 2112 purr: 2113 mew: 1087 purr: 2114

+) Komprimieren und Zusammenfiihren

Zusammengefiihrte Segmente 1 und 2

yawn: 511 scratch: 252 | mew: 1087 purr: 2114

Abbildung 3-3: Komprimieren und Zusammenfiihren von Segmenten gleichzeitig durchfiihren

Jedes Segment besitzt jetzt seine eigene speicherinterne Hashtabelle, die Schliissel
auf Dateioffsets abbildet. Um den Wert fiir einen Schiissel zu finden, tiberpriifen
wir zuerst die Hashtabelle des neuesten Segments. Wenn der Schliissel nicht vor-
handen ist, sehen wir im zweitjiingsten Segment nach usw. Durch das Zusammen-
fihren bleibt die Anzahl der Segmente gering, sodass Nachschlageoperationen
nicht sehr viele Hashtabellen iiberpriifen miissen.

Damit diese einfache Idee in der Praxis auch funktioniert, sind noch jede Menge
Details zu beriicksichtigen. In einer wirklichen Implementierung sind unter ande-
rem folgende wichtige Punkte zu kliren:

Dateiformat
CSV ist nicht das beste Format fiir ein Protokoll. Schneller und einfacher zu
verwenden ist ein binidres Format, das zuerst die Liange eines Strings in Bytes
codiert und daran anschlief$end den rohen String speichert (ohne dass Escape-
zeichen notwendig sind).

78 | Kapitel 3: Speichern und Abrufen

Datensdtze l6schen
Wenn Sie einen Schliissel und seinen zugeordneten Wert loschen mochten,
miissen Sie einen speziellen Loschdatensatz an die Datendatei anfiigen (auch
als Tombstone [Grabstein] bezeichnet). Beim Zusammenfithren von Protokoll-
segmenten erkennt der Zusammenfithrungsprozess am Léschdatensatz, dass
alle vorherigen Werte fiir den geléschten Schliissel zu verwerfen sind.

Wiederherstellung nach Absturz

Wenn die Datenbank neu gestartet wird, gehen die speicherinternen Hashta-
bellen verloren. Im Prinzip kénnen Sie die Hashtabelle fiir jedes Segment wie-
derherstellen, indem Sie die gesamte Segmentdatei von Anfang bis Ende lesen
und sich dabei den Offset des neuesten Werts fiir jeden Schliissel notieren.
Dies kann jedoch recht lange dauern, wenn die Segmentdateien grof sind,
was Serverneustarts besonders schmerzhaft macht. Bitcask beschleunigt die
Wiederherstellung, indem ein Snapshot der Hashtabelle fiir jedes Segment auf
der Festplatte abgelegt wird. Diese ldsst sich dann schneller in den Arbeits-
speicher laden.

Teilweise geschriebene Datensdtze
Die Datenbank kann jederzeit abstiirzen, auch mitten im Anfiigen eines
Datensatzes an das Protokoll. Bitcask-Dateien enthalten Priifsummen, sodass
sich beschidigte Teile des Protokolls erkennen und ignorieren lassen.

Steuerung der Nebenlaufigkeit
Da die Schreibvorgiinge in streng sequenzieller Reihenfolge an das Protokoll
angefiigt werden, wird dies iiblicherweise mit nur einem Schreib-Thread
implementiert. An Datendateisegmente kann ausschliefflich am Ende ange-
fugt werden, und sie sind anderweitig unverinderlich, sodass sie von mehre-
ren Threads parallel gelesen werden kénnen.

Ein Protokoll im Anfiigemodus scheint auf den ersten Blick verschwenderisch zu
sein: Warum aktualisiert man die Datei nicht an Ort und Stelle, indem man den
alten Wert mit dem neuen Wert iiberschreibt? Doch ein Konzept, das nur Anfiigen
am Ende erlaubt, erweist sich aus mehreren Griinden als vorteilhaft:

* Das Anfiigen und Zusammenfithren von Segmenten sind sequenzielle Schreib-
operationen, die im Allgemeinen wesentlich schneller ablaufen als Schreib-
operationen mit wahlfreiem Zugriff. Das trifft insbesondere auf Festplatten-
laufwerke mit rotierenden Magnetscheiben zu. Zum Teil sind sequenzielle
Schreiboperationen auch bei Flash-basierten SSD-Laufwerken (Solid State
Drives) zu bevorzugen [4]. Im Abschnitt »B-Bdume und LSM-Biume im Ver-
gleich« auf Seite 89 gehen wir niher auf dieses Thema ein.

* Nebenldufigkeit und Wiederherstellung bei Abstiirzen lassen sich wesentlich
einfacher realisieren, wenn die Segmentdateien nur Anfiigen erlauben oder
unverianderlich sind. Zum Beispiel brauchen Sie sich nicht um den Fall zu
kiitmmern, wenn ein Absturz passiert ist, wihrend ein Wert iiberschrieben

Datenstrukturen, auf denen Ihre Datenbank beruht | 79

wird, wobei eine Datei zuriickbleibt, die einen Teil des alten und einen Teil
des neuen Werts enthilt, die miteinander verschweifit sind.

* Das Zusammenfiihren alter Segmente vermeidet das Problem, dass Datenda-
teien mit der Zeit fragmentiert werden.

Allerdings sind beim Hashtabellenindex ebenfalls Einschrinkungen zu beachten:

* Die Hashtabelle muss in den Arbeitsspeicher passen. Wenn Sie also eine sehr
grofle Anzahl von Schliisseln verwalten miissen, haben Sie Pech. Prinzipiell
lieRe sich eine Hashtabelle auf der Festplatte verwalten, doch leider ist es
schwierig, mit einer festplattengestiitzten Hashtabelle eine brauchbare Perfor-
mance zu erzielen. Es sind jede Menge E/A-Operationen mit wahlfreiem
Zugriff erforderlich; es ist aufwendig, die Tabelle zu erweitern, wenn sie voll
ist; und Hashkollisionen verlangen nach einer ausgefeilten Logik [5].

* Bereichsabfragen sind nicht effizient. Zum Beispiel konnen Sie nicht einfach
nach allen Schliisseln zwischen kitty00000 und kitty99999 suchen — Sie miiss-
ten jeden Schliissel einzeln in den Hashtabellen nachschlagen.

Im nichsten Abschnitt sehen wir uns eine Indexstruktur an, die diese Beschrin-
kungen nicht aufweist.

SSTables und LSM-Baume

In Abbildung 3-3 ist jedes protokollstrukturierte Speichersegment eine Sequenz
von Schliissel-Wert-Paaren. Diese Paare erscheinen in der Reihenfolge, in der sie
geschrieben wurden, und Werte, die weiter hinten in der Protokolldatei stehen,
haben Vorrang vor den Werten fiir denselben Schliissel weiter vorn im Protokoll.
Abgesehen davon spielt die Reihenfolge der Schliissel-Wert-Paare in der Datei
keine Rolle.

Jetzt kénnen wir eine einfache Anderung am Format unserer Segmentdateien vor-
nehmen: Wir fordern, dass die Sequenz der Schliissel-Wert-Paare nach dem
Schliissel sortiert wird. Auf den ersten Blick sieht es so aus, als ob diese Forderung
unsere Fihigkeit unterbindet, sequenzielle Schreibvorginge zu verwenden, doch
dazu kommen wir gleich. Wir nennen dieses Format Sorted String Table (kurz
SSTable). Des Weiteren fordern wir, dass jeder Schliissel nur einmal innerhalb je-
der zusammengefithrten Segmentdatei erscheinen darf (das sichert bereits die
Komprimierung ab). SSTables bieten mehrere entscheidende Vorteile gegentiber
Protokollsegmenten mit Hashindizes:

1. Das Zusammenfiihren von Segmenten ist einfach und effizient, selbst wenn
die Dateien groRer als der verfiigbare Arbeitsspeicher sind. Das Konzept ent-
spricht dem beim Mergesort-Algorithmus verwendeten Vorgang und ist in
Abbildung 3-4 zu sehen: Man liest zunichst die Eingabedateien nebeneinan-
der ein, sucht nach dem ersten Schliissel in jeder Datei, kopiert den kleinsten

80 | Kapitel3: Speichern und Abrufen

Schliissel (entsprechend der Sortierreihenfolge) in die Ausgabedatei und wie-
derholt das Ganze. Dabei entsteht eine neue zusammengefiihrte Segmentda-
tei, die ebenfalls nach dem Schliissel sortiert ist.

handbag: 8786 | handful: 40308 | handicap: 65995 | handkerchief: 16324 %

€

/ handlebars: 3869 | handprinted: 11150 >
(%]

o

handcuffs: 2729 | handful: 42307 | handicap: 67884 | handiwork: 16912 E

€

handkerchief: 20952 | handprinted: 15725 o

(%]

m

handful: 44662 | handicap: 70836 | handiwork: 45521 | handlebars: 3869 %

€

handoff: 5741 | handprinted: 33632 o

(%]

+) Komprimieren und Zusammenfiihren

handbag: 8786 | handcuffs: 2729 | handful: 44662 | handicap: 70836 5:

£ —

handiwork: 45521 | handkerchief: 20952 | handlebars: 3869 | handoff: 5741 %‘_g

w3

handprinted: 33632 NG

Abbildung 3-4: Zusammenfiihren mehrerer SSTable-Segmente, wobei nur der neueste Wert fiir
jeden Schliissel beibehalten wird

Wie sieht es aus, wenn der gleiche Schliissel in mehreren Eingabesegmenten
vorkommt? Denken Sie daran, dass jedes Segment alle Werte enthilt, die in
einer bestimmten Zeitspanne in die Datenbank geschrieben wurden. Das
heiflt, dass alle Werte in dem einen Eingabesegment neuer sein miissen als
alle Werte im anderen Segment (unter der Annahme, dass wir immer aufein-
anderfolgende Segmente zusammenfiihren). Wenn mehrere Segmente den
gleichen Schliissel enthalten, kénnen wir den Wert aus dem neuesten Seg-
ment behalten und die Werte in élteren Segmenten verwerfen.

2. Um einen bestimmten Schliissel in der Datei zu finden, brauchen Sie nicht
mehr den kompletten Index aller Schliissel im Speicher zu halten. Sehen Sie
sich das Beispiel in Abbildung 3-5 an: Angenommen, Sie suchen nach dem
Schliissel handiwork, kennen aber nicht den genauen Offset dieses Schliissels
in der Segmentdatei. Allerdings kennen Sie die Offsets fiir die Schliissel hand-
bag und handsome, und aufgrund der Sortierung ist bekannt, dass handiwork
zwischen diesen beiden liegen muss. Das heifit, Sie konnen zum Offset fiir
handbag springen und von dort aus suchen, bis Sie handiwork finden (oder
eben nicht, wenn der Schliissel nicht in der Datei vorhanden ist).

Datenstrukturen, auf denen Ihre Datenbank beruht | 81

Dinnbesetzter Index

Sortierte Segmentdatei (SSTable) auf der Festplatte
im Arbeitsspeicher |

......... hand: 91541

Schlissel Byteoffset

handbag: 8786 | handcuffs: 2729 | handful: 44662
hammock 100491 ¢

handbag 1021344
handsome 104667 handlebars: 3869 | handoff: 5741 | handprinted: 33632
hangout 1068124

handicap: 70836 | handiwork: 45521 | handkerchief: 20952

komprimierbarer Block

handsome: 86478 | handwaving: 44005 | handwriting: 22846

Abbildung 3-5: Eine SSTable mit einem speicherinternen Index

Trotzdem brauchen Sie noch einen speicherinternen Index, der Thnen die Off-
sets fiir einige der Schliissel angibt, aber er kann diinnbesetzt ausfallen: ein
Schliissel fiir alle paar Kilobyte der Segmentdatei gentigt, weil sich einige Kilo-
byte sehr schnell durchsuchen lassen.!

3. Da Leseanfragen ohnehin iiber mehrere Schliissel-Wert-Paare im angefragten
Bereich scannen miissen, ist es moglich, diese Datensitze in einem Block zu
gruppieren und zu komprimieren, bevor die Daten auf die Festplatte geschrie-
ben werden (durch den schattierten Bereich in Abbildung 3-5 angezeigt). Je-
der Eintrag des reduzierten speicherinternen Index zeigt dann auf den Beginn
eines komprimierten Blocks. Abgesehen von einer Einsparung an Speicher-
platz verringert die Komprimierung auch den E/A-Bandbreitenbedarf.

SSTables konstruieren und verwalten

So weit, so gut — doch wie bekommen Sie Thre Daten tiberhaupt erst einmal nach
Schliisseln sortiert? Unsere eingehenden Schreibvorginge kénnen in beliebiger
Reihenfolge auftreten.

Es ist durchaus moglich, eine sortierte Struktur auf der Festplatte zu verwalten
(siehe Abschnitt »B-Baume« auf Seite 85), doch im Arbeitsspeicher lisst sie sich
einfacher verwalten. Es gibt viele etablierte Baumdatenstrukturen, die Sie verwen-
den konnen, beispielsweise Rot-Schwarz-Baume oder AVL-Biume [2]. Mit diesen
Datenstrukturen konnen Sie Schliissel in jeder Reihenfolge einfiigen und sie in sor-
tierter Reihenfolge wieder auslesen.

1 Hatten alle Schliissel eine feste GroRe, kénnte man eine binire Suche auf der Segmentdatei ausfithren
und auf den speicherinternen Index ginzlich verzichten. Allerdings sind die Schliissel in der Praxis
normalerweise unterschiedlich lang, sodass sich schwer sagen lisst, wo der eine Datensatz endet und
der nichste beginnt, wenn man keinen Index hat.

82 | Kapitel3: Speichern und Abrufen

Unsere Storage-Engine kénnen wir nun wie folgt zum Laufen bringen:

* Wenn Schreibdaten eintreffen, werden diese in eine speicherinterne balan-
cierte Baumdatenstruktur eingefiigt (zum Beispiel in einen Rot-Schwarz-
Baum). Dieser speicherinterne Baum wird auch als MemTable bezeichnet.

* Wenn die MemTable groRer als ein bestimmter Schwellenwert wird — typi-
scherweise einige Megabyte —, wird sie als SSTable-Datei auf die Festplatte
geschrieben. Das lisst sich effizient bewerkstelligen, weil der Baum bereits die
Schliissel-Wert-Paare nach Schliisseln sortiert verwaltet. Die neue SSTable-
Datei wird zum neuesten Segment der Datenbank. Wihrend die SSTable auf
Festplatte geschrieben wird, kénnen weitere Schreibvorginge in eine neue
MemTable-Instanz erfolgen.

* Um eine Leseanforderung zu bedienen, wird zuerst versucht, den Schliissel in
der MemTable zu finden, dann im neuesten Segment auf der Festplatte, dann
im nichst dlteren Segment usw.

* Gelegentlich werden im Hintergrund die Segmentdateien zusammengefiihrt
und komprimiert, um tiberschriebene oder geldschte Werte zu verwerfen.

Dieser Ansatz funktioniert gut. Es leidet nur an einem Problem: Wenn die Daten-
bank abstiirzt, gehen die letzten Schreibvorginge (die zwar in der MemTable ste-
hen, aber noch nicht auf Festplatte geschrieben wurden) verloren. Um dieses Pro-
blem zu vermeiden, kénnen wir ein separates Protokoll auf der Festplatte fiithren,
in das jeder Schreibvorgang sofort angefiigt wird, genau wie im vorherigen Ab-
schnitt. Dieses Protokoll ist nicht sortiert, doch das spielt keine Rolle, weil sein
einziger Zweck darin besteht, die MemTable nach einem Absturz wiederherzustel-
len. Jedes Mal, wenn die MemTable in eine SSTable tibernommen wird, kann das
entsprechende Protokoll verworfen werden.

Einen LSM-Baum aus SSTables erstellen

Der hier beschriebene Algorithmus ist praktisch das, was in LevelDB [6] und
RocksDB [7] verwendet wird. Diese Storage-Engine-Bibliotheken fiir Schliissel-
Wert-Paare sind dafiir konzipiert, in andere Anwendungen eingebettet zu werden.
Unter anderem lésst sich LevelDB in Riak als Alternative zu Bitcask einsetzen.
Ahnliche Storage-Engines werden in Cassandra und HBase verwendet [8], die
beide durch den BigTable-Artikel von Google [9] inspiriert wurden (der die Be-
griffe SSTable und MemTable eingefiithrt hat).

Urspriinglich wurde diese Indexstruktur von Patrick O’Neil et al. unter dem Na-
men Log-Structured Merge-Tree (oder LSM-Tree) [10] beschrieben, aufbauend auf
einer fritheren Arbeit an protokollstrukturierten Dateisystemen [11]. Storage-En-
gines, die auf diesem Prinzip von Zusammenfithren und Komprimieren sortierter
Dateien aufbauen, werden oftmals LSM-Storage-Engines genannt.

Lucene, eine von Elasticsearch und Solr eingesetzte Index-Engine fiir Volltext-
suchen arbeitet nach einer dhnlichen Methode, um ihr Begriffswérterbuch zu spei-

Datenstrukturen, auf denen Ihre Datenbank beruht | 83

chern [12, 13]. Ein Volltextindex ist wesentlich komplexer als ein Schliissel-Wert-
Index, beruht aber auf einer dhnlichen Idee: Finde fiir ein gegebenes Wort in einer
Suchabfrage alle Dokumente (Webseiten, Produktbeschreibungen usw.), in denen
das Wort vorkommt. Dies wird mit einer Schliissel-Wert-Struktur implementiert,
bei der der Schliissel ein Wort (ein Begriff) ist und der Wert die Liste der IDs aller
Dokumente, die das Wort enthalten (die Postingsliste). In Lucene wird diese Ab-
bildung von der Begriffs- auf die Postingsliste in SSTable-dhnlichen sortierten Da-
teien gehalten, die bei Bedarf im Hintergrund zusammengefiithrt werden [14].

Performanceoptimierungen

Wie immer ist viel Detailarbeit erforderlich, um in der Praxis eine gute Leistung
der Storage-Engine zu erreichen. Zum Beispiel kann der LSM-Baum-Algorithmus
beim Nachschlagen von Schliisseln, die in der Datenbank nicht existieren, lang-
sam sein: Sie miissen die MemTable tiberpriifen, dann die Segmente bis zuriick
zum iltesten (und moglicherweise jedes einzelne von der Festplatte lesen), bevor
Sie sicher sein konnen, dass der Schliissel nicht existiert. Um derartige Zugriffe zu
optimieren, verwenden Storage-Engines oftmals zusitzliche Bloom-Filter [15]. (Ein
Bloom-Filter ist eine speichereffiziente Datenstruktur, um den Inhalt einer Menge
anzunihern. Er kann sagen, ob ein Schliissel in der Datenbank fehlt, und spart so-
mit viele unnotige Festplattenleseoperationen fiir nicht existierende Schliissel.)

Es gibt auch andere Strategien, um Reihenfolge und Timing zu bestimmen, wie
SSTables komprimiert und zusammengefiithrt werden. Die gingigsten Optionen
sind eine sogenannte size-tiered (nach Dateigrof3e gruppierte) oder eine leveled (in
Ringe gruppierte) Komprimierung. Die Bibliotheken LevelDB und RocksDB ver-
wenden ranggruppierte Komprimierung (der Name von LevelDB ist vom »leveled«
Ansatz hergeleitet), HBase verwendet DateigrofRengruppierung, und Cassandra
unterstiitzt beide [16]. Bei der nach DateigrofRe gruppierten Komprimierung wer-
den neuere und kleinere SSTables stufenweise zu ilteren und gréfReren SSTables
zusammengefiihrt. Bei der ranggruppierten Komprimierung wird hingegen der
Schliisselbereich in kleinere SSTables aufgeteilt, und iltere Daten werden in sepa-
rate »Ringe« verschoben, wodurch die Komprimierung inkrementell ablaufen
kann und deshalb weniger Festplattenplatz benétigt.

Obwohl viele Feinheiten zu beachten sind, ist die Grundidee von LSM-Bdumen —
eine Kaskade von SSTables zu verwalten, die im Hintergrund zusammengefiihrt
werden — einfach und effektiv. Selbst wenn die Datenmenge wesentlich grofer als
der verfuigbare Arbeitsspeicher ist, funktioniert das Verfahren weiterhin gut. Da
die Daten in sortierter Reihenfolge gespeichert werden, kénnen Sie Bereichsabfra-
gen effizient durchfithren (alle Schliissel oberhalb eines Minimums bis zu einem
bestimmten Maximum scannen), und weil die Festplattenschreibvorginge se-
quenziell erfolgen, kann der LSM-Baum einen bemerkenswert hohen Schreib-
durchsatz unterstiitzen.

84 | Kapitel3: Speichern und Abrufen

B-Baume

Die protokollstrukturierten Indizes, die wir bisher besprochen haben, gewinnen
zwar an Akzeptanz, sind aber nicht die gebriuchlichste Indexart. Am weitesten
verbreitet ist eine ganz andere Indexstruktur: der B-Baum.

Die 1970 eingefithrten [17] und kaum 10 Jahre spéter als »allgegenwiirtig« [18] ti-
tulierten B-Biaume haben sich im Laufe der Zeit gut bewihrt. In nahezu allen rela-
tionalen Datenbanken bleiben sie die Standardindeximplementierung, und viele
nichtrelationale Datenbanken nutzen sie ebenfalls.

Wie SSTables halten B-Biume Schliissel-Wert-Paare nach dem Schliissel sortiert,
was effiziente Schliissel-Wert-Nachschlageoperationen und Bereichsabfragen er-
moglicht. Doch an dieser Stelle hort die Ahnlichkeit auf: B-Biume haben eine
ginzlich andere Entwurfsphilosophie.

Die protokollstrukturierten Indizes, wie sie weiter vorn zu sehen waren, gliedern
die Datenbank in Segmente variabler GroRRe von typischerweise mehreren Mega-
byte und schreiben ein Segment immer sequenziell. Im Unterschied dazu gliedern
B-Biume die Datenbank in Blécke oder Seiten fester Grofle von traditionell 4 KB
(manchmal auch mehr) und lesen oder schreiben jeweils eine Seite auf einmal.
Dieses Design kommt der zugrunde liegenden Hardware niher, da Festplatten
ebenfalls in Blocke fester Grofle unterteilt sind.

Jede Seite kann mit einer Adresse oder einer Position identifiziert werden, wo-
durch eine Seite auf eine andere verweisen kann — dhnlich einem Zeiger, aber auf
Festplatte statt im Arbeitsspeicher. Diese Seitenreferenzen kénnen wir verwenden,
um einen Baum von Seiten zu konstruieren, wie Abbildung 3-6 veranschaulicht.

»Nachschlagen von user_id = 257«

| ref ‘100‘ ref ‘200‘ ref ‘300‘ ref ‘400‘ ref ‘500‘ ref |

. e *~-.._) key = 500
......... » 400 < key < 500
........... » 300 < key <400

key <100 4 ot
,-*7100 < key < 200 200 < key < 300

D

4
[ref [111] ref [135] ref [152] ref [169] ref [190] ref |

’ . .

e » » P P\ “A

| ref ‘210‘ ref ‘230‘ ref ‘250‘ ref ‘270‘ ref ‘290‘ ref |

re » » Py A

250 < key < 270

[250] val [251] val [252] val [253] val [254] val |

Abbildung 3-6: Nachschlagen eines Schliissels mit einem B-Baum-Index

Datenstrukturen, auf denen Ihre Datenbank beruht | 85

Eine bestimmte Seite ist als Wurzel des B-Baums festgelegt. Hier beginnen Sie im-
mer, wenn Sie nach einem Schliissel im Index suchen. Die Seite enthilt mehrere
Schliissel und Referenzen auf untergeordnete Seiten. Jede untergeordnete Seite ist
fir einen zusammenhingenden Schliisselbereich zustindig, und die Schliissel zwi-
schen den Referenzen zeigen an, wo die Grenzen zwischen diesen Bereichen liegen.

Da wir im Beispiel, das Abbildung 3-6 zeigt, nach dem Schliissel 251 suchen, wis-
sen wir, dass wir der Seitenreferenz zwischen den Grenzen 200 und 300 folgen
miissen. Dies bringt uns zu einer dhnlich aussehenden Seite, die den Bereich von
200 bis 300 weiter in Teilbereiche unterteilt.

Schliefflich gelangen wir zu einer Seite, die einzelne Schliissel enthilt (eine Blatt-
seite), die entweder den Wert fiir jeden Schliissel inline speichert oder die Seiten
referenziert, wo die eigentlichen Werte gefunden werden konnen.

Die Anzahl der Referenzen auf untergeordnete Seiten in einer Seite des B-Baums
ist der Verzweigungsgrad. So ist im Beispiel von Abbildung 3-6 der Verzweigungs-
grad gleich 6. In der Praxis hingt der Verzweigungsgrad davon ab, wie viele Bytes
benotigt werden, um die Seitenreferenzen und die Bereichsgrenzen zu speichern;
typischerweise betrigt der Verzweigungsgrad mehrere Hundert.

| ref ‘310‘ ref ‘333‘ ref ‘345‘ ref l (Reserve) |

e » Py
333 < key < 345 :

|333‘ val ‘335‘ val ‘337 val ‘340‘ val ‘342‘ val |

Nach Hinzufiigen von Schliissel 334:

| ref ‘310‘ ref ‘333‘ ref ‘337‘ ref ‘345‘ ref l (Reserve)

e » Py

333 <key <337 337 < key < 345
| 333 ‘ val ‘ 334‘ val ‘ 335 ‘ val l (Reserve) |
| 337 ‘ val ‘ 340 ‘ val ‘ 342 ‘ val l (Reserve)

Abbildung 3-7: Wachsen eines B-Baums durch Teilen einer Seite

Wenn Sie den Wert fiir einen vorhandenen Schliissel in einem B-Baum aktualisie-
ren wollen, suchen Sie nach der Blattseite, die diesen Schliissel enthilt, indern den
Wert in dieser Seite und schreiben die Seite zuriick auf die Festplatte (Verweise
von anderen Seiten auf diese Seite bleiben dabei giiltig). Mochten Sie einen neuen
Schliissel hinzufiigen, miissen Sie die Seite suchen, deren Bereich den neuen
Schliissel umschlief$t, und ihn zu dieser Seite hinzufiigen. Wenn in der Seite nicht
geniigend Platz fiir den neuen Schliissel ist, wird sie in zwei halbvolle Seiten geteilt

86 | Kapitel3: Speichern und Abrufen

und die tbergeordnete Seite wird aktualisiert, um die neue Unterteilung der
Schliisselbereiche zu erfassen — siche Abbildung 3-7.2

Dieser Algorithmus stellt sicher, dass der Baum balanciert bleibt: Ein B-Baum mit
n Schliisseln hat immer eine Tiefe von O(log n). Die meisten Datenbanken passen
in einen B-Baum, der drei oder vier Ebenen tief ist. Somit brauchen Sie nicht vielen
Seitenverweisen zu folgen, um die gesuchte Seite zu finden. (Ein Baum mit vier
Ebenen, 4 KB groflen Seiten und mit einem Verzweigungsfaktor von 500 kann bis
zu 256 TB speichern.)

B-Baume zuverldssig machen

Beim Schreiben in einem B-Baum wird prinzipiell eine Seite auf der Festplatte mit
den neuen Daten tberschrieben. Es wird davon ausgegangen, dass sich beim
Uberschreiben die Position der Seite nicht dndert; d.h., alle Referenzen auf diese
Seite bleiben intakt, wenn die Seite iiberschrieben wird. Dieses Vorgehen steht in
krassem Kontrast zu protokollstrukturierten Indizes wie zum Beispiel LSM-Biu-
men, die ausschlieflich an Dateien anfiigen (und letztlich veraltete Dateien 16-
schen), aber niemals Dateien direkt modifizieren.

Das Uberschreiben einer Seite auf Festplatte kénnen Sie sich als echte Hard-
wareoperation vorstellen. Auf einer magnetischen Festplatte verschiebt die Steue-
rung den Schreib-Lese-Kopf zur richtigen Spur, wartet auf die richtige Position der
sich drehenden Magnetplatten und tiberschreibt dann den jeweiligen Sektor mit
neuen Daten. Auf SSDs sind die Vorginge etwas komplizierter, was mit dem Um-
stand zusammenhingt, dass eine SSD ziemlich grofRe Blocke auf dem Speicherchip
auf einmal 16schen und neu beschreiben muss [19].

Dariiber hinaus ist es bei manchen Vorgingen erforderlich, mehrere verschiedene
Seiten zu iiberschreiben. Wenn Sie zum Beispiel eine Seite teilen, weil sie beim
Einfiigen zu voll geworden wire, miissen Sie die beiden geteilten Seiten schreiben
und auflerdem deren tibergeordnete Seite iiberschreiben, um die Referenzen auf
die beiden untergeordneten Seiten zu aktualisieren. Diese Operation ist gefdhrlich,
denn wenn die Datenbank abstiirzt, nachdem nur einige der Seiten geschrieben
worden sind, ist das Ergebnis ein beschidigter Index (zum Beispiel kann eine ver-
waiste Seite entstehen, die zu keiner tibergeordneten Seite mehr gehort).

Um die Datenbank gegeniiber Abstiirzen robust zu machen, verwalten Implemen-
tierungen von B-Biumen tiblicherweise eine zusitzliche Datenstruktur auf der Fest-
platte: ein Write-Ahead-Log (WAL) — auch als Wiederholungsprotokoll (Redo-Log)
bekannt. Dies ist eine Datei, an die jede B-Baum-Modifikation angefiigt werden
muss, bevor sie auf die Seiten des Baums selbst angewendet werden darf. Wenn
die Datenbank nach einem Absturz wieder gestartet wird, lisst sich anhand dieses
Protokolls der B-Baum in einen konsistenten Zustand wiederherstellen [5, 20].

2 Einen neuen Schliissel kann man relativ einfach in einen B-Baum einfiigen; einen Schliissel zu loschen
(und dabei den Baum balanciert zu halten), ist dagegen etwas komplizierter [2].

Datenstrukturen, auf denen Ihre Datenbank beruht | 87

Beim direkten Aktualisieren von Seiten ist zusitzlich zu beriicksichtigen, dass eine
sorgfiltige Nebenlaufigkeitssteuerung erforderlich ist, wenn mehrere Threads
gleichzeitig auf den B-Baum zugreifen — andernfalls kann ein Thread den Baum in
einem inkonsistenten Zustand vorfinden. Dies geschieht in der Regel dadurch,
dass die Datenstrukturen des Baums mit Indexsperren (engl. Latches; leichtge-
wichtige Sperren) geschiitzt werden. Protokollstrukturierte Ansitze sind in dieser
Hinsicht einfacher, weil sie das gesamte Zusammenfithren im Hintergrund abwi-
ckeln, ohne mit eingehenden Abfragen zu kollidieren, und alte Segmente von Zeit
zu Zeit atomar gegen neue Segmente austauschen.

Optimierungen von B-Baumen

Da B-Bdume schon so lange existieren, iiberrascht es nicht, dass im Lauf der Jahre
viele Optimierungen entwickelt worden sind. Um nur ein paar zu nennen:

* Anstatt Seiten zu iiberschreiben und ein WAL fiir die Wiederherstellung bei
Abstiirzen zu verwalten, verwenden manche Datenbanken (wie LMDB) ein
Kopieren-beim-Schreiben-Prinzip [21]. Eine modifizierte Seite wird an einen
anderen Ort geschrieben, und im Baum wird eine neue Version der iibergeord-
neten Seiten angelegt, die auf die neue Position verweisen. Dieses Konzept ist
auch nutzlich fir die Kontrolle der Nebenliufigkeit, wie der Abschnitt
»Snapshot-Isolation und Repeatable Read« auf Seite 252 erldutert.

* Auf den Seiten lisst sich Platz sparen, wenn man nicht den gesamten Schliissel
speichert, sondern ihn abkiirzt. Speziell auf Seiten im Inneren des Baums miis-
sen Schliissel nur so viele Informationen liefern, dass sie als Grenzen zwischen
Schliisselbereichen fungieren konnen. Werden mehr Schliissel auf eine Seite
gepackt, kann der Baum einen hoheren Verzweigungsgrad und folglich weni-
ger Ebenen haben.3

* Im Allgemeinen kénnen Seiten an beliebigen Stellen auf der Festplatte unter-
gebracht werden; es gibt keinerlei Forderungen, dass Seiten mit benachbarten
Schliisselbereichen auch auf der Festplatte nahe beieinanderliegen miissten.
Wenn eine Abfrage iiber einen groflen Teil des Schliisselbereichs in sortierter
Reihenfolge scannen muss, ist dieses seitenorientierte Layout eventuell ineffi-
zient, weil eine Festplattenpositionierung fiir jede gelesene Seite erforderlich
sein kann. Viele B-Baum-Implementierungen versuchen deshalb, den Baum so
anzuordnen, dass die Blattseiten auf der Festplatte in sequenzieller Reihen-
folge liegen. Allerdings ist es schwierig, diese Reihenfolge aufrechtzuerhalten,
wenn der Baum wichst. Dagegen schreiben LSM-Biume beim Zusammenfiih-
ren grofle Segmente des Speicherinhalts in einem Zug, sodass es fiir sie einfa-
cher ist, aufeinanderfolgende Schliissel nahe beieinander auf der Festplatte
abzulegen.

3 Diese Variante wird auch als B*-Baum bezeichnet, obwohl die Optimierung so hiufig vorkommt, dass
man diese Variante oftmals nicht von anderen B-Baum-Varianten unterscheidet.

88 | Kapitel3: Speichern und Abrufen

* Zusitzliche Zeiger kénnen in den Baum eingefiigt werden. Zum Beispiel kann
jede Blattseite Verweise auf ihre gleichgeordneten Seiten nach links und rechts
haben, sodass sich Schliissel der Reihe nach suchen lassen, ohne zu iiberge-
ordneten Seiten zuriickspringen zu miissen.

* B-Baum-Varianten wie zum Beispiel fraktale Bdume [22] orientieren sich zum
Teil an protokollstrukturierten Konzepten, um die Anzahl der Festplattenpo-
sitionierungen zu verringern (sie haben allerdings nichts mit Fraktalen zu tun).

B-Baume und LSM-Baume im Vergleich

Obwohl B-Baum-Implementierungen im Allgemeinen ausgereifter sind als LSM-
Baum-Implementierungen, sind LSM-Biume auch wegen ihrer Performanceeigen-
schaften interessant. Als Faustregel gilt, dass Schreibvorginge bei LSM-Biaumen
und Lesevorginge bei B-Biumen typischerweise schneller sind [23]. Lesevorginge
sind bei LSM-Baumen in der Regel langsamer, weil sie mehrere verschiedene Da-
tenstrukturen und SSTables auf verschiedenen Komprimierungsringen priifen
miissen.

Allerdings sind Ergebnisse von Benchmarks oftmals nicht schliissig und hingen
stark von Details der Arbeitsbelastung ab. Um brauchbare Vergleiche durchfithren
zu konnen, missen Sie die Systeme mit Threr konkreten Arbeitsbelastung testen.
In diesem Abschnitt gehen wir kurz auf einige Dinge ein, die Sie bei Leistungsmes-
sungen einer Storage-Engine beachten sollten.

Vorteile von LSM-Baumen

Ein B-Baum-Index muss jedes Datenelement mindestens zweimal schreiben: ein-
mal in das Write-Ahead-Log und einmal auf die Baumseite selbst (und vielleicht
erneut, wenn Seiten geteilt werden). Auflerdem entsteht ein Overhead, weil eine
ganze Seite geschrieben werden muss, selbst wenn sich auf dieser Seite nur wenige
Bytes geindert haben. Manche Storage-Engines iiberschreiben dieselbe Seite sogar
zweimal, damit zum Beispiel bei einem Stromausfall keine nur teilweise aktuali-
sierte Seite zurtickbleibt [24, 25].

Protokollstrukturierte Indizes schreiben die Daten ebenfalls mehrmals neu, was
mit wiederholtem Komprimieren und Zusammenfiihren von SSTables zusammen-
hingt. Dieser Effekt — ein Schreibvorgang in der Datenbank fithrt zu mehreren
Schreibvorgingen auf der Festplatte wihrend der Lebenszeit der Datenbank —
wird als Write Amplification (Schreibverstirkung) bezeichnet. Dies ist besonders
kritisch bei SSD-Laufwerken, bei denen die Anzahl der Schreibzyklen technolo-
gisch begrenzt ist, Blocke also nicht beliebig oft iiberschrieben werden kénnen, be-
vor die Speicherzellen verschlissen sind.

Bei schreibintensiven Anwendungen kann der Engpass die Rate sein, mit der die
Datenbank auf Festplatte schreiben kann. In diesem Fall schligt sich die Write
Amplification direkt in Performancekosten nieder: Je mehr eine Storage-Engine

Datenstrukturen, auf denen Ihre Datenbank beruht | 89

auf Festplatte schreibt, desto weniger Schreiboperationen pro Sekunde kann sie
innerhalb der verfiigbaren Festplattenbandbreite verarbeiten.

Dariiber hinaus sind LSM-Biume typischerweise in der Lage, einen hoheren
Schreibdurchsatz als B-Biume aufrechtzuerhalten, einerseits, weil sie manchmal
eine geringere Write Amplification haben (obwohl diese von der Konfiguration
der Storage-Engine und der Arbeitslast abhingt), und andererseits, weil sie se-
quenziell kompakte SSTable-Dateien schreiben, anstatt mehrere Seiten im Baum
iberschreiben zu miissen [26]. Dieser Unterschied ist besonders wichtig bei mag-
netischen Festplatten, wo sequenzielle Schreiboperationen wesentlich schneller als
wahlfreie Schreiboperationen sind.

LSM-Bidume konnen besser komprimiert werden und ergeben folglich oftmals
kleinere Dateien auf der Festplatte als B-Baume. B-Baum-Storage-Engines nutzen
aufgrund der Fragmentierung nicht den gesamten Festplattenplatz aus: Wenn eine
Seite geteilt wird oder wenn eine Zeile nicht auf eine vorhandene Seite passt, bleibt
Platz in einer Seite ungenutzt. Da LSM-Bdume nicht seitenorientiert sind und re-
gelmiRig SSTables neu schreiben, um die Fragmentierung zu beseitigen, haben sie
einen geringeren Speicheroverhead, und zwar insbesondere, wenn sie ranggrup-
pierte Komprimierung verwenden [27].

Auf vielen SSDs verwendet die Firmware intern einen protokollstrukturierten Al-
gorithmus, um wahlfreie Schreibvorginge in sequenzielle Schreibvorginge auf den
zugrunde liegenden Speicherchips umzuwandeln, was dazu fiihrt, dass sich das
Schreibmuster der Storage-Engine weniger stark bemerkbar macht [19]. Allerdings
sind eine geringere Write Amplification und verringerte Fragmentierung bei SSDs
trotzdem von Vorteil: Die kompaktere Darstellung der Daten erlaubt mehr Lese-
und Schreibzugriffe innerhalb der verfigbaren E/A-Bandbreite.

Nachteile von LSM-Baumen

Nachteilig bei der protokollstrukturierten Speicherung ist, dass der Komprimie-
rungs- und Zusammenfiihrungsvorgang manchmal die Performance von laufen-
den Lese- und Schreiboperationen beeintrichtigen kann. Selbst wenn Storage-En-
gines versuchen, die Komprimierung inkrementell auszufithren und ohne
gleichzeitige Zugriffe zu beeinflussen, kann es durch die begrenzten Ressourcen
von Festplatten leicht passieren, dass eine Anforderung warten muss, wihrend die
Festplatte einen umfangreichen Komprimierungsvorgang abschlief3t. Der Einfluss
auf den Durchsatz und die mittlere Reaktionszeit ist normalerweise gering, doch
bei hoheren Perzentilen (siche Abschnitt »Performance beschreiben« auf Seite 14)
kann die Reaktionszeit von Anfragen an protokollstrukturierte Storage-Engines
manchmal ziemlich lang sein, und B-Biume koénnen einheitlichere Performance
zeigen [28].

Ein anderes Problem bei der Komprimierung entsteht bei einem hohen Schreib-
durchsatz: Die endliche Schreibbandbreite der Festplatte missen sich der anfing-

90 | Kapitel3: Speichern und Abrufen

liche Schreibvorgang (Protokollieren und Schreiben einer MemTable auf die Fest-
platte) und die im Hintergrund laufenden Komprimierungsthreads teilen. Beim
Schreiben in eine leere Datenbank steht die volle Bandbreite fiir den anfinglichen
Schreibvorgang zur Verfiigung, doch je grofler die Datenbank wird, desto mehr
Bandbreite ist fiir die Komprimierung erforderlich.

Wenn bei einem hohen Schreibdurchsatz die Komprimierung nicht sorgfiltig kon-
figuriert ist, kann die Komprimierung gegebenenfalls nicht mehr mit der Rate der
eingehenden Schreibanforderungen Schritt halten. In diesem Fall wichst die An-
zahl der nicht zusammengefithrten Segmente auf der Festplatte, bis kein Festplat-
tenplatz mehr tbrig ist. Auch die Leseoperationen laufen langsamer ab, weil sie
mehr Segmentdateien priifen missen. Typischerweise drosseln SSTable-basierte
Storage-Engines die eingehenden Schreibanforderungen nicht, selbst wenn die
Komprimierung nicht Schritt halten kann. Diese Situation miissen Sie deshalb ex-
plizit tiberwachen und erkennen [29, 30].

B-Biume haben unter anderem den Vorteil, dass jeder Schliissel an genau einer
Stelle im Index vorhanden ist, wihrend eine protokollstrukturierte Storage-Engine
mehrere Kopien desselben Schliissels in verschiedenen Segmenten haben kann.
Dieser Aspekt macht B-Biume attraktiv fiir Datenbanken, die strenge transaktio-
nale Semantik bieten wollen: In vielen relationalen Datenbanken wird die Trans-
aktionsisolation durch Sperren auf Schliisselbereichen implementiert, und in ei-
nem B-Baum-Index konnen diese Sperren unmittelbar dem Baum zugewiesen
werden [5]. In Kapitel 7 kommen wir auf diesen Punkt ausfiihrlich zu sprechen.

B-Biume sind in der Architektur von Datenbanken tief verwurzelt und bieten eine
durchgingig gute Performance fiir viele Arbeitslasten. Es ist also unwahrschein-
lich, dass sie in absehbarer Zeit von der Bildfliche verschwinden werden. In neue-
ren Datenspeichern werden protokollstrukturierte Indizes zunehmend beliebter.
Da es keine Regel gibt, nach der Sie schnell und einfach bestimmen kénnten, wel-
cher Typ von Storage-Engine fiir Thren Anwendungsfall besser geeignet ist, lohnt
es sich, empirisch zu testen.

Andere Indizierungsstrukturen

Bislang haben wir uns nur mit Schliissel-Wert-Indizes beschiftigt, die etwa einem
Primdrschliisselindex im rationalen Modell entsprechen. Ein Primirschlissel iden-
tifiziert eindeutig eine Zeile in einer relationalen Tabelle, ein Dokument in einer
Dokumentendatenbank oder einen Knoten in einer Graphdatenbank. Andere Da-
tensitze in der Datenbank kénnen auf diese Zeile, das Dokument oder den Kno-
ten mit dem entsprechenden Primirschliissel (oder der ID) verweisen, und der In-
dex dient dazu, solche Verweise aufzultsen.

Es ist auch tiblich, sekunddre Indizes anzulegen. In relationalen Datenbanken kén-
nen Sie mehrere sekundire Indizes auf derselben Tabelle mit der Anweisung CRE-
ATE INDEX anlegen. Oftmals sind solche Indizes entscheidend, um Joins effizient

Datenstrukturen, auf denen Ihre Datenbank beruht | 91

ausfithren zu kénnen. Zum Beispiel wiirden Sie in Abbildung 2-1 von Kapitel 2
hochstwahrscheinlich einen sekundiren Index auf den user id-Spalten einrichten,
um effizient alle Zeilen zu finden, die in jeder der Tabellen zum selben Benutzer
gehoren.

Ein sekundirer Index lisst sich leicht aus einem Schliissel-Wert-Index konstruie-
ren. Der Unterschied zu einem Primirindex besteht vor allem darin, dass Schliissel
nicht eindeutig sind; d.h., es kann viele Zeilen (bzw. Dokumente oder Knoten)
mit dem gleichen Schliissel geben. Dies lisst sich nach zwei Methoden auflésen:
Entweder macht man jeden Wert im Index zu einer Liste von tibereinstimmenden
Zeilenbezeichnern (wie zum Beispiel eine Postings-Liste in einem Volltextindex),
oder man macht jeden Schliissel eindeutig, indem man ihm einen Zeilenbezeich-
ner anftigt. In jedem Fall kénnen sowohl B-Biume als auch protokollstrukturierte
Indizes als sekundire Indizes verwendet werden.

Werte im Index speichern

In einem Index ist es der Schliissel, wonach Abfragen suchen, doch der Wert kann
zweierlei sein: Er konnte die tatsichlich gesuchte Zeile (bzw. Dokument oder Kno-
ten) sein oder ein Verweis auf die Zeile, die an anderer Stelle gespeichert ist. Im
zweiten Fall ist der Ort, an dem die Zeilen gespeichert werden, die sogenannte
Heap-Datei. Sie speichert die Daten in einer unbestimmten Reihenfolge. (Die
Heap-Datei verwaltet typischerweise den Speicherplatz in einer Weise, die erlaubt,
geldschte Zeilen spéter mit neuen Daten zu iiberschreiben.) Der Ansatz mit Heap-
Datei ist gebrauchlich, weil er doppelte Daten vermeidet, wenn mehrere Sekunda-
rindizes vorhanden sind: Jeder Index verweist einfach auf eine Stelle in der Heap-
Datei, und die eigentlichen Daten werden an einem Ort fiir sich gespeichert.

Wird ein Wert aktualisiert, ohne den Schliissel zu dndern, kann der Ansatz mit
Heap-Datei recht effizient sein: Der Datensatz kann an Ort und Stelle tiberschrie-
ben werden, sofern der neue Wert nicht mehr Platz benétigt als der alte Wert. Die
Situation ist komplizierter, wenn der neue Wert grofSer ist, denn er muss mogli-
cherweise an eine neue Position im Heap verschoben werden, wo geniigend Platz
zur Verfiigung steht. In diesem Fall miissen entweder alle Indizes aktualisiert wer-
den, um auf die neue Heap-Position des Datensatzes zu verweisen, oder es wird an
der alten Heap-Position ein Weiterleitungszeiger hinterlassen [5].

In manchen Situationen bedeutet der zusitzliche Sprung vom Index zur Heap-Da-
tei zu viel Einbuffe an Performance bei Leseoperationen, sodass es wiinschenswert
sein kann, die indizierte Zeile direkt innerhalb eines Index zu speichern. Dies wird
als gruppierter Index (clustered index) bezeichnet. Zum Beispiel ist in der Storage-
Engine InnoDB von MySQL der Primirschliissel einer Tabelle immer ein gruppier-
ter Index, und Sekundirindizes verweisen auf den Primirschliissel (statt auf eine
Position in der Heap-Datei) [31]. In SQL Server kénnen Sie pro Tabelle einen
gruppierten Index vorgeben [32].

92 | Kapitel3: Speichern und Abrufen

Ein Kompromiss zwischen einem gruppierten Index (der alle Zeilendaten inner-
halb des Index speichert) und eines nicht gruppierten Index (der innerhalb des In-
dex nur Verweise auf die Daten speichert) wird als abdeckender Index (covering in-
dex) oder Index mit eingeschlossenen Spalten bezeichnet. Er speichert ausgewdhlte
Spalten einer Tabelle innerhalb des Index [33]. Auf diese Weise lassen sich man-
che Abfragen allein durch Verwendung des Index beantworten (in diesem Fall sagt
man, dass der Index die Abfrage abdeckt) [32].

Wie bei jeder Art von Datenduplizierung kénnen gruppierte und abdeckende Indi-
zes Leseoperationen beschleunigen, doch sie erfordern zusitzlichen Speicher und
konnen Overhead bei Schreibvorgingen verursachen. Datenbanken miissen zu-
dem zusitzlichen Aufwand betreiben, um transaktionale Garantien durchzuset-
zen, weil Anwendungen keine Inkonsistenzen aufgrund der Duplizierung sehen
sollten.

Mehrspaltige Indizes

Die bisher vorgestellten Indizes bilden nur einen einzelnen Schliissel auf einen
Wert ab. Das gentigt nicht, wenn wir mehrere Spalten einer Tabelle (oder mehrere
Felder in einem Dokument) gleichzeitig abfragen miissen.

Die gebriuchlichste Art eines mehrspaltigen Index ist ein sogenannter zusammen-
gesetzter Index (concatenated index), der einfach mehrere Felder zu einem Schliis-
sel zusammenfasst, indem eine Spalte an eine andere angefiigt wird (wobei die In-
dexdefinition festlegt, in welcher Reihenfolge die Felder verkettet werden). Dies ist
wie bei einem althergebrachten gedruckten Telefonbuch, das einen Index von
(Nachname, Vorname) zur Telefonnummer bietet. Aufgrund der Sortierreihen-
folge eignet sich der Index, um alle Personen mit einem bestimmten Nachnamen
zu finden oder alle Leute mit einer bestimmten Nachname-Vorname-Kombina-
tion. Der Index ist jedoch nutzlos, wenn Sie alle Personen mit einem bestimmten
Vornamen ermitteln wollen.

Mehrdimensionale Indizes sind eine allgemeinere Methode, mehrere Spalten auf
einmal abzufragen, was vor allem fiir Geodaten/raumbezogene Daten wichtig ist.
Zum Beispiel konnte eine Website fiir Restaurantsuchen eine Datenbank mit den
Breiten- und Lingengradangaben jedes Restaurants fithren. Wenn sich ein Benut-
zer die Restaurants auf einer Karte ansieht, muss die Website nach allen Restau-
rants innerhalb des rechteckigen Kartenausschnitts suchen, den der Benutzer ge-
rade betrachtet. Dazu ist eine Abfrage fiir einen zweidimensionalen Bereich wie im
folgenden Beispiel erforderlich:
SELECT * FROM restaurants WHERE latitude > 51.4946 AND latitude < 51.5079
AND longitude > -0.1162 AND longitude < -0.1004;

Ein standardmiRiger B-Baum- oder LSM-Baum-Index ist nicht in der Lage, derar-
tige Abfragen effizient zu beantworten: Er kann Thnen entweder alle Restaurants
in einem Bereich von Breitengraden (aber mit beliebigen Lingengraden) oder alle

Datenstrukturen, auf denen Ihre Datenbank beruht | 93

Restaurants in einem Bereich von Lingengraden (aber irgendwo zwischen Nord-
und Siidpol) liefern, aber nicht beide gleichzeitig.

Eine Moglichkeit besteht darin, einen zweidimensionalen Ort mithilfe einer raum-
filllenden Kurve in eine einzelne Zahl zu iibersetzen und dann einen normalen B-
Baum-Index zu verwenden [34]. Gebriuchlicher sind spezialisierte raumliche Indi-
zes wie zum Beispiel R-Biume. So implementiert PostGIS Geodatenindizes als R-
Baum mit der Generalized Search Tree-(GiST-)Schnittstelle von PostgreSQL [35].
Aus Platzgriinden kénnen wir nicht im Detail auf R-Biume eingehen, doch gibt es
hierzu jede Menge Literatur.

Interessant sind auch andere Einsatzarten von mehrdimensionalen Indizes, nicht
nur fiir geografische Orte. Zum Beispiel konnten Sie auf einer E-Commerce-Web-
site einen dreidimensionalen Index auf den Dimensionen (Rot, Griin, Blau) ver-
wenden, um nach Produkten in einem bestimmten Farbenbereich zu suchen, oder
in einer Datenbank mit Wetterbeobachtungen einen zweidimensionalen Index auf
(Datum, Temperatur) einrichten, um nach allen Beobachtungen im Jahr 2013 zu
suchen, bei denen die Temperatur zwischen 25 und 30 °C lag. Mit einem eindi-
mensionalen Index missten Sie entweder sdmtliche Datensitze von 2013 (ohne
Beachtung der Temperatur) durchsuchen und sie dann nach Temperatur filtern
oder umgekehrt. Mit einem zweidimensionalen Index lieRen sich die Daten gleich-
zeitig nach Zeitstempel und Temperatur einengen. HyperDex verwendet diese
Technik [36].

Volltextsuche und Fuzzy-Indizes

Alle bisher behandelten Indizes gehen davon aus, dass Sie iiber genaue Daten ver-
fiigen und nach genauen Werten eines Schliissels oder einem Bereich von Schliis-
selwerten mit einer Sortierreihenfolge abfragen kénnen. Dagegen erlauben sie Th-
nen nicht, nach dhnlichen Schliisseln zu suchen, beispielsweise nach falsch
geschriebenen Wortern. Eine derartige unscharfe (engl. fuzzy) Abfrage verlangt an-
dere Techniken.

Beispielsweise erlauben es Volltextsuchmaschinen iiblicherweise, die Suche nach
einem Wort auf Synonyme des Worts auszudehnen, grammatikalische Variatio-
nen des Worts zu ignorieren und nach nahe beieinanderliegenden Vorkommen
des Worts im selben Dokument zu suchen. Zudem unterstiitzen sie verschiedene
andere Features, die von der linguistischen Analyse des Texts abhingen. Um mit
Tippfehlern in Dokumenten oder Abfragen zurechtzukommen, ist Lucene in der
Lage, Text nach Wortern innerhalb einer bestimmten Editierdistanz (auch Le-
venshtein-Distanz) zu suchen (wobei eine Editierdistanz von 1 bedeutet, dass ge-
nau ein Buchstabe hinzugefiigt, entfernt oder ersetzt wurde) [37].

Wie in Abschnitt »Einen LSM-Baum aus SSTables erstellen« auf Seite 83 erwihnt,
verwendet Lucene eine SSTable-ihnliche Struktur fir sein Begriffsworterbuch.

94 | Kapitel3: Speichern und Abrufen

Diese Struktur benétigt einen kleinen speicherinternen Index, dem Abfragen ent-
nehmen konnen, bei welchem Offset in der sortierten Datei sie nach einem Schliis-
sel suchen missen. In LevelDB ist dieser speicherinterne Index eine schwach be-
setzte Auflistung einiger Schliissel, wihrend in Lucene der speicherinterne Index
durch einen endlichen Automaten iiber die Zeichen der Schliissel — dhnlich einem
Trie (Priafixbaum) — realisiert wird [38]. Dieser Automat lisst sich in einen Le-
venshtein-Automaten transformieren, der eine effiziente Suche nach Woértern in-
nerhalb einer vorgegebenen Editierdistanz unterstiitzt [39].

Andere unscharfe Suchtechniken gehen in Richtung Dokumentklassifizierung und
maschinelles Lernen. Weitere Details hierzu finden Sie in Lehrbiichern zur Infor-
mationsgewinnung [zum Beispiel 40].

Alles im Arbeitsspeicher halten

Die bisher in diesem Kapitel besprochenen Datenstrukturen sind alles Antworten
auf Beschrinkungen von Festplatten gewesen. Verglichen mit dem Hauptspeicher
ist der Umgang mit Festplatten umstindlich. Sowohl bei magnetischen Festplatten
als auch bei SSDs miissen Sie die Daten sorgfiltig auf dem Datentriger anordnen,
wenn Sie gute Performance bei Lese- und Schreibvorgingen erzielen wollen. Aller-
dings tolerieren wir diese Unbequemlichkeit, weil Festplatten zwei erhebliche Vor-
teile bieten: Sie sind dauerhaft (ihr Inhalt geht nicht verloren, wenn der Strom ab-
geschaltet wird), und die Kosten pro Gigabyte sind geringer als bei RAM.

Mit billiger werdendem RAM wird das Argument Kosten pro Gigabyte ausge-
hohlt. Viele Datensitze sind einfach nicht sonderlich groft, sodass es durchaus
machbar ist, sie vollstindig im Arbeitsspeicher zu halten, eventuell iiber mehrere
Computer hinweg verteilt. Dies hat zur Entwicklung von speicherinternen Daten-
banken gefiihrt.

Einige speicherinterne Schliissel-Wert-Speicher wie zum Beispiel Memcached sind
allein fiir Caching-Zwecke vorgesehen, wo ein Datenverlust durch einen Neustart
des Computers akzeptierbar ist. Andere speicherinterne Datenbanken sind dage-
gen auf Dauerhaftigkeit ausgelegt, die sich mit spezieller Hardware (wie zum Bei-
spiel batteriegestiitztem RAM), durch Schreiben eines Anderungsprotokolls auf
Festplatte, durch periodisches Schreiben von Snapshots auf Festplatte oder durch
Replizieren des speicherinternen Zustands auf andere Computer erreichen lésst.
Wird eine speicherinterne Datenbank neu gestartet, muss sie ihren Zustand erneut
laden, und zwar entweder von Festplatte oder iiber das Netzwerk von einem
Replikat (sofern keine spezielle Hardware verwendet wird). Trotz der Schreibvor-
ginge auf Festplatte handelt es sich immer noch um eine speicherinterne Daten-
bank, weil sie die Festplatte lediglich als Protokoll fiir Dauerhaftigkeit nutzt und
Lesevorginge komplett aus dem Arbeitsspeicher bedient. Das Schreiben auf Fest-
platte hat auch Vorteile fiir den Betrieb: Dateien auf Festplatte lassen sich leicht
von externen Dienstprogrammen sichern, inspizieren und analysieren.

Datenstrukturen, auf denen Ihre Datenbank beruht | 95

