
| 73

Kapitel 3 KAPITEL 3

Kapitel 3Speichern und Abrufen

Wer Ordnung hält, ist nur zu faul zum Suchen.

– Deutsches Sprichwort

Eine Datenbank muss grundsätzlich zwei Dinge tun: Wenn man ihr Daten über-
gibt, sollte sie die Daten speichern, und wenn man sie später wieder abfragt, sollte
sie die Daten zurückgeben.

In Kapitel 2 haben wir Datenmodelle und Abfragesprachen besprochen – d.h. das
Format, in dem Sie (der Anwendungsentwickler) der Datenbank Ihre Daten anbie-
ten, und den Mechanismus, mit dem Sie später danach fragen können. In diesem
Kapitel besprechen wir das Gleiche aus dem Blickwinkel der Datenbank: Wie kön-
nen wir die übergebenen Daten speichern und wie können wir sie wiederfinden,
wenn wir danach gefragt werden?

Warum sollten Sie sich als Anwendungsentwickler darum kümmern, wie die Da-
tenbank das Speichern und Abrufen intern realisiert? Wahrscheinlich werden Sie
nicht Ihre eigene Storage-Engine von Grund auf neu implementieren, doch von
den vielen verfügbaren Storage-Engines müssen Sie eine auswählen, die für Ihre
Anwendung geeignet ist. Um eine Storage-Engine so zu konfigurieren, dass sie die
vorgesehene Arbeitsbelastung gut bewältigt, brauchen Sie eine grobe Vorstellung
davon, was die Storage-Engine hinter den Kulissen macht.

Insbesondere besteht ein großer Unterschied zwischen Storage-Engines, die für
transaktionale Arbeitslasten optimiert sind, und denjenigen, die für Datenanaly-
seaufgaben optimiert sind. Auf diesen Unterschied gehen wir später ein im Ab-
schnitt »Transaktionsverarbeitung oder Datenanalyse?« auf Seite 97, und im Ab-
schnitt »Spaltenorientierte Speicherung« auf Seite 103 befassen wir uns mit einer
Familie von Storage-Engines, die für Analytik optimiert ist.

Zu Beginn dieses Kapitels sprechen wir aber über Storage-Engines von Datenban-
ken, mit denen Sie wahrscheinlich vertraut sind. Dabei geht es um herkömmliche
relationale Datenbanken und auch einen Großteil der sogenannten NoSQL-Da-
tenbanken. Wir untersuchen zwei Familien von Storage-Engines: protokollstruk-

74 | Kapitel 3: Speichern und Abrufen

turierte Storage-Engines und seitenorientierte Storage-Engines wie zum Beispiel
B-Bäume.

Datenstrukturen, auf denen Ihre Datenbank beruht
Sehen Sie sich die einfachste Datenbank der Welt an, die in Form zweier Bash-
Funktionen implementiert ist:

#!/bin/bash

db_set () {
echo "$1,$2" >> database

}

db_get () {
grep "^$1," database | sed -e "s/^$1,//" | tail -n 1

}

Diese beiden Funktionen implementieren einen Schlüssel-Wert-Speicher. Mit dem
Aufruf db_set key value können Sie den Schlüssel key und den Wert value in der
Datenbank speichern. Schlüssel und Wert können (fast) alles sein, was Sie möch-
ten – zum Beispiel könnte der Wert ein JSON-Dokument sein. Dann können Sie
mit dem Aufruf db_get key nach dem neuesten Wert suchen, der diesem Schlüssel
zugeordnet ist, und ihn zurückgeben.

Und es funktioniert:

$ db_set 123456 '{"name":"London","attractions":["Big Ben","London Eye"]}'

$ db_set 42 '{"name":"San Francisco","attractions":["Golden Gate Bridge"]}'

$ db_get 42
{"name":"San Francisco","attractions":["Golden Gate Bridge"]}

Das zugrunde liegende Speicherformat ist sehr einfach: eine Textdatei, in der jede
Zeile ein Schlüssel-Wert-Paar, getrennt durch ein Komma, enthält (etwa wie eine
CSV-Datei, ohne Berücksichtigung von Escape-Zeichenfolgen). Jeder Aufruf von
db_set fügt die Daten an das Ende der Datei an. Wenn Sie also einen Schlüssel
mehrmals aktualisieren, werden die alten Versionen des Werts nicht überschrie-
ben – Sie müssen nach dem letzten Vorkommen eines Schlüssels in einer Datei su-
chen, um den neuesten Wert zu finden (daher das tail -n 1 in der Funktion db_
get):

$ db_set 42 '{"name":"San Francisco","attractions":["Exploratorium"]}'

$ db_get 42
{"name":"San Francisco","attractions":["Exploratorium"]}

$ cat database
123456,{"name":"London","attractions":["Big Ben","London Eye"]}
42,{"name":"San Francisco","attractions":["Golden Gate Bridge"]}
42,{"name":"San Francisco","attractions":["Exploratorium"]}

 Datenstrukturen, auf denen Ihre Datenbank beruht | 75

Unsere Funktion db_set zeigt eigentlich eine gute Performance für etwas so Einfa-
ches, weil das Anfügen an eine Datei im Allgemeinen sehr effizient vonstatten
geht. Ähnlich dem, was db_set tut, verwenden viele Datenbanken intern ein Proto-
koll, das als Datei implementiert ist, an die nur am Ende angefügt werden kann.
Echte Datenbanken haben mit mehr Problemen zu tun (zum Beispiel Nebenläufig-
keit steuern, Festplattenplatz freigeben, damit das Protokoll nicht unendlich
wächst, und Fehler sowie unvollständig geschriebene Datensätze behandeln),
doch das Grundprinzip ist das gleiche. Protokolle sind unglaublich nützlich, und
wir werden sie im Rest dieses Buchs noch mehrmals antreffen.

Unter Protokoll (englisch: log, im Sinne eines Logbuchs) versteht
man oftmals ein Anwendungsprotokoll, in das eine Anwendung
Text ausgibt, um Ereignisse zu beschreiben. In diesem Buch verwen-
den wir Protokoll in einem allgemeiner gefassten Sinn: als Folge von
Datensätzen, die ausschließlich angefügt werden. Die Daten müssen
nicht notwendigerweise im Klartextformat vorliegen, sondern kön-
nen auch binär codiert und nur zum Lesen durch andere Programme
vorgesehen sein.

Andererseits legt unsere Funktion db_get eine furchtbare Performance an den Tag,
wenn die Datenbank eine große Anzahl von Datensätzen speichert. Bei jeder Su-
che nach einem Schlüssel muss db_get die gesamte Datenbankdatei von Anfang
bis Ende durchgehen und nach den Vorkommen des Schlüssels suchen. Im
Sprachgebrauch der Algorithmenanalyse sagt man, dass die Kosten einer solchen
Suche O(n) betragen: Wenn Sie die Anzahl der Datensätze n in Ihrer Datenbank
verdoppeln, dauert die Suche doppelt so lange. Das ist nicht gut.

Um effizient den Wert für einen bestimmten Schlüssel in der Datenbank zu fin-
den, brauchen wir eine andere Datenstruktur: einen Index. In diesem Kapitel se-
hen wir uns ein paar Indexstrukturen an und vergleichen sie. Prinzipiell liegt ihnen
die Idee zugrunde, zusätzliche Metadaten mitzuführen, die als Wegweiser dienen
und Ihnen helfen, die gewünschten Daten aufzufinden. Wenn Sie dieselben Daten
auf verschiedene Art und Weise suchen wollen, brauchen Sie gegebenenfalls meh-
rere verschiedene Indizes, die verschiedene Bestandteile der Daten abdecken.

Ein Index ist eine zusätzliche Struktur, die aus den primären Daten abgeleitet wird.
Viele Datenbanken erlauben es Ihnen, Indizes hinzuzufügen und zu entfernen.
Dies wirkt sich nicht auf den Inhalt der Datenbank aus, sondern beeinflusst nur
die Performance von Abfragen. Die Verwaltung zusätzlicher Strukturen bringt spe-
ziell bei Schreibvorgängen einen Overhead mit sich. Beim Schreiben ist es schwer,
die Performance eines einfachen Anfügens an eine Datei zu übertreffen, weil das
die einfachste mögliche Schreiboperation ist. Jede Art von Index bremst Schreib-
vorgänge normalerweise ab, weil der Index bei jedem Schreiben von Daten eben-
falls aktualisiert werden muss.

Dies ist eine wichtige Abwägung in Speichersystemen: Gut gewählte Indizes be-
schleunigen Leseabfragen, aber jeder Index bremst die Schreibvorgänge. Aus die-

76 | Kapitel 3: Speichern und Abrufen

sem Grund indizieren Datenbanken standardmäßig nicht einfach alles, sondern
verlangen von Ihnen – dem Anwendungsentwickler oder Datenbankadministrator –,
die Indizes manuell auszuwählen, wobei Sie Ihr Wissen über die typischen Ab-
fragemuster der Anwendung einfließen lassen. Dann können Sie die Indizes aus-
wählen, von denen Ihre Anwendung am meisten profitiert, ohne mehr Overhead
als notwendig einzubringen.

Hash-Indizes
Beginnen wir mit Indizes für Schlüssel-Wert-Daten. Dies ist nicht die einzige Art
von Daten, die man indizieren kann, aber sie kommt häufiger vor, und dieser In-
dex ist ein nützlicher Baustein für komplexere Indizes.

Schlüssel-Wert-Speicher ähneln stark dem Wörterbuchtyp (Dictionary), den Sie in
den meisten Programmiersprachen finden und der normalerweise als Hashtabelle
(engl. Hash Map) implementiert ist. Hashtabellen werden in vielen Lehrbüchern
für Algorithmen beschrieben [1, 2], sodass wir hier nicht im Detail auf ihre Ar-
beitsweise eingehen. Da wir bereits über Hashtabellen für unsere speicherinternen
Datenstrukturen verfügen, sollten wir dann nicht auch unsere Daten auf der Fest-
platte damit indizieren?

Nehmen wir an, in unserem Datenspeicher werden die Einträge wie im vorherigen
Beispiel immer nur an eine Datei angefügt. Dann sieht die einfachste Indizierungs-
strategie so aus: Führen einer speicherinternen Hashtabelle, in der jeder Schlüssel
auf einen Byteoffset in der Datendatei abgebildet wird – dem Ort, an dem der
Wert gefunden werden kann, wie es Abbildung 3-1 veranschaulicht. Immer wenn
Sie ein neues Schlüssel-Wert-Paar an die Datei anfügen, aktualisieren Sie auch die
Hashtabelle, sodass sie den Offset der eben geschriebenen Daten widerspiegelt
(dies funktioniert sowohl beim Einfügen von neuen Schlüsseln als auch beim Ak-
tualisieren vorhandener Schlüssel). Wenn Sie einen Wert nachschlagen möchten,
suchen Sie in der Hashtabelle den Offset auf die Datendatei heraus, suchen diese
Position auf und lesen den Wert.

Dies mag grob vereinfachend erscheinen, doch der Ansatz ist brauchbar. Tatsäch-
lich ist dies im Wesentlichen das, was Bitcask (die Standard-Storage-Engine in
Riak) tut [3]. Bitcask bietet hochperformante Lese- und Schreiboperationen, die
der Forderung unterliegen, dass alle Schlüssel in den verfügbaren Arbeitsspeicher
(RAM) passen, da die Hashtabelle gänzlich im Arbeitsspeicher gehalten wird. Die
Werte dürfen mehr Platz belegen als Arbeitsspeicher vorhanden ist, da sie sich von
der Festplatte mit lediglich einem einfachen Suchvorgang laden lassen. Falls sich
dieser Teil der Datendatei bereits im Cache des Dateisystems befindet, ist für ein
Lesen überhaupt keine Festplatten-E/A erforderlich.

Eine Storage-Engine wie Bitcask ist gut geeignet für Situationen, in denen der
Wert für jeden Schlüssel häufig aktualisiert wird. So könnte der Schlüssel die URL
eines Katzenvideos sein und der Wert eine Zahl, die angibt, wie oft es wiedergege-

 Datenstrukturen, auf denen Ihre Datenbank beruht | 77

ben wurde (jedes Mal inkrementiert, wenn jemand auf die Play-Schaltfläche
klickt). Bei einer derartigen Arbeitsbelastung gibt es jede Menge Schreibvorgänge,
wobei aber die Anzahl unterschiedlicher Schlüssel überschaubar bleibt – man hat
eine große Anzahl von Schreibvorgängen pro Schlüssel, doch es ist praktikabel,
alle Schlüssel im Arbeitsspeicher zu halten.

Abbildung 3-1: Ein Protokoll von Schlüssel-Wert-Paaren wird in einem CSV-ähnlichen Format
gespeichert, indiziert mit einer speicherinternen Hashtabelle.

Da wir wie bisher beschrieben ausschließlich an eine Datei anfügen, stellt sich die
Frage: Wie vermeiden wir, dass uns letztendlich der Festplattenplatz ausgeht?
Eine gute Lösung ist es, das Protokoll in Segmente einer bestimmten Größe aufzu-
teilen, indem man eine Segmentdatei schließt, wenn sie eine bestimmte Größe er-
reicht hat, und die nächsten Schreibvorgänge in eine neue Segmentdatei ausführt.
Diese Segmente können wir dann komprimieren, wie Abbildung 3-2 zeigt. Kompri-
mierung bedeutet, doppelte Schlüssel aus dem Protokoll zu entfernen und nur die
letzte Aktualisierung für jeden Schlüssel zu behalten.

Abbildung 3-2: Komprimierung eines Schlüssel-Wert-Aktualisierungsprotokolls (das zählt, wie
oft jedes Katzenvideo wiedergegeben wurde), wobei nur der neueste Wert für jeden Schlüssel
beibehalten wird

1 2 3 4 5 6 , { " n a m e " : " L o n d o n " , " a t t r a
c t i o n s " : [" B i g B e n " , " L o n d o n E y e
"] } \n 4 2 , { " n a m e " : " S a n F r a n c i s c o "

", a t t r a c t i o n s " : [" G o l d e n G a t e B
r i d g e "] } \n

Speicherinterne HashtabelleSchlüssel

123456 0

42 64

0 10 20

30 40 50

60 70 80

90 100 110

120

Byteoffset

Protokollstrukturierte Datei auf der Festplatte
(jedes Kästchen ist ein Byte)

mew: 1078 purr: 2103 purr: 2104 mew: 1079 mew: 1080

mew: 1082

mew: 1081

purr: 2105 purr: 2106 purr: 2107 purr: 2108yawn: 511

yawn: 511

Komprimierung

mew: 1082 purr: 2108

Komprimiertes Segment

Datendateisegment

78 | Kapitel 3: Speichern und Abrufen

Da zudem die Segmente beim Komprimieren deutlich kleiner werden (unter der
Annahme, dass ein Schlüssel im Durchschnitt mehrmals innerhalb eines Segments
überschrieben wird), können wir während der Komprimierung auch mehrere Seg-
mente zusammenführen (siehe Abbildung 3-3). Da Segmente niemals geändert
werden, nachdem sie geschrieben wurden, schreiben wir das zusammengeführte
Segment in eine neue Datei. Das Zusammenführen und Komprimieren von einge-
frorenen Segmenten kann in einem Hintergrund-Thread erfolgen. Und während
das geschieht, können wir Lese- und Schreibanfragen wie üblich weiterhin bedie-
nen, indem wir die alten Segmentdateien verwenden. Wenn das Zusammenführen
abgeschlossen ist, leiten wir die Leseanfragen auf die neuen, zusammengeführten
Segmente anstelle der alten Segmente – und dann können die alten Segmentda-
teien einfach gelöscht werden.

Abbildung 3-3: Komprimieren und Zusammenführen von Segmenten gleichzeitig durchführen

Jedes Segment besitzt jetzt seine eigene speicherinterne Hashtabelle, die Schlüssel
auf Dateioffsets abbildet. Um den Wert für einen Schüssel zu finden, überprüfen
wir zuerst die Hashtabelle des neuesten Segments. Wenn der Schlüssel nicht vor-
handen ist, sehen wir im zweitjüngsten Segment nach usw. Durch das Zusammen-
führen bleibt die Anzahl der Segmente gering, sodass Nachschlageoperationen
nicht sehr viele Hashtabellen überprüfen müssen.

Damit diese einfache Idee in der Praxis auch funktioniert, sind noch jede Menge
Details zu berücksichtigen. In einer wirklichen Implementierung sind unter ande-
rem folgende wichtige Punkte zu klären:

Dateiformat
CSV ist nicht das beste Format für ein Protokoll. Schneller und einfacher zu
verwenden ist ein binäres Format, das zuerst die Länge eines Strings in Bytes
codiert und daran anschließend den rohen String speichert (ohne dass Escape-
zeichen notwendig sind).

mew: 1078 purr: 2103 purr: 2104 mew: 1079 mew: 1080

mew: 1082

mew: 1081

purr: 2105 purr: 2106 purr: 2107 purr: 2108yawn: 511

purr: 2109 purr: 2110 mew: 1083 scratch: 252 mew: 1084

purr: 2114

mew: 1085

purr: 2111 mew: 1086 purr: 2112 mew: 1087purr: 2113

yawn: 511

Komprimieren und Zusammenführen

scratch: 252 mew: 1087 purr: 2114

Zusammengeführte Segmente 1 und 2

Datendateisegment 1

Datendateisegment 2

 Datenstrukturen, auf denen Ihre Datenbank beruht | 79

Datensätze löschen
Wenn Sie einen Schlüssel und seinen zugeordneten Wert löschen möchten,
müssen Sie einen speziellen Löschdatensatz an die Datendatei anfügen (auch
als Tombstone [Grabstein] bezeichnet). Beim Zusammenführen von Protokoll-
segmenten erkennt der Zusammenführungsprozess am Löschdatensatz, dass
alle vorherigen Werte für den gelöschten Schlüssel zu verwerfen sind.

Wiederherstellung nach Absturz
Wenn die Datenbank neu gestartet wird, gehen die speicherinternen Hashta-
bellen verloren. Im Prinzip können Sie die Hashtabelle für jedes Segment wie-
derherstellen, indem Sie die gesamte Segmentdatei von Anfang bis Ende lesen
und sich dabei den Offset des neuesten Werts für jeden Schlüssel notieren.
Dies kann jedoch recht lange dauern, wenn die Segmentdateien groß sind,
was Serverneustarts besonders schmerzhaft macht. Bitcask beschleunigt die
Wiederherstellung, indem ein Snapshot der Hashtabelle für jedes Segment auf
der Festplatte abgelegt wird. Diese lässt sich dann schneller in den Arbeits-
speicher laden.

Teilweise geschriebene Datensätze
Die Datenbank kann jederzeit abstürzen, auch mitten im Anfügen eines
Datensatzes an das Protokoll. Bitcask-Dateien enthalten Prüfsummen, sodass
sich beschädigte Teile des Protokolls erkennen und ignorieren lassen.

Steuerung der Nebenläufigkeit
Da die Schreibvorgänge in streng sequenzieller Reihenfolge an das Protokoll
angefügt werden, wird dies üblicherweise mit nur einem Schreib-Thread
implementiert. An Datendateisegmente kann ausschließlich am Ende ange-
fügt werden, und sie sind anderweitig unveränderlich, sodass sie von mehre-
ren Threads parallel gelesen werden können.

Ein Protokoll im Anfügemodus scheint auf den ersten Blick verschwenderisch zu
sein: Warum aktualisiert man die Datei nicht an Ort und Stelle, indem man den
alten Wert mit dem neuen Wert überschreibt? Doch ein Konzept, das nur Anfügen
am Ende erlaubt, erweist sich aus mehreren Gründen als vorteilhaft:

• Das Anfügen und Zusammenführen von Segmenten sind sequenzielle Schreib-
operationen, die im Allgemeinen wesentlich schneller ablaufen als Schreib-
operationen mit wahlfreiem Zugriff. Das trifft insbesondere auf Festplatten-
laufwerke mit rotierenden Magnetscheiben zu. Zum Teil sind sequenzielle
Schreiboperationen auch bei Flash-basierten SSD-Laufwerken (Solid State
Drives) zu bevorzugen [4]. Im Abschnitt »B-Bäume und LSM-Bäume im Ver-
gleich« auf Seite 89 gehen wir näher auf dieses Thema ein.

• Nebenläufigkeit und Wiederherstellung bei Abstürzen lassen sich wesentlich
einfacher realisieren, wenn die Segmentdateien nur Anfügen erlauben oder
unveränderlich sind. Zum Beispiel brauchen Sie sich nicht um den Fall zu
kümmern, wenn ein Absturz passiert ist, während ein Wert überschrieben

80 | Kapitel 3: Speichern und Abrufen

wird, wobei eine Datei zurückbleibt, die einen Teil des alten und einen Teil
des neuen Werts enthält, die miteinander verschweißt sind.

• Das Zusammenführen alter Segmente vermeidet das Problem, dass Datenda-
teien mit der Zeit fragmentiert werden.

Allerdings sind beim Hashtabellenindex ebenfalls Einschränkungen zu beachten:

• Die Hashtabelle muss in den Arbeitsspeicher passen. Wenn Sie also eine sehr
große Anzahl von Schlüsseln verwalten müssen, haben Sie Pech. Prinzipiell
ließe sich eine Hashtabelle auf der Festplatte verwalten, doch leider ist es
schwierig, mit einer festplattengestützten Hashtabelle eine brauchbare Perfor-
mance zu erzielen. Es sind jede Menge E/A-Operationen mit wahlfreiem
Zugriff erforderlich; es ist aufwendig, die Tabelle zu erweitern, wenn sie voll
ist; und Hashkollisionen verlangen nach einer ausgefeilten Logik [5].

• Bereichsabfragen sind nicht effizient. Zum Beispiel können Sie nicht einfach
nach allen Schlüsseln zwischen kitty00000 und kitty99999 suchen – Sie müss-
ten jeden Schlüssel einzeln in den Hashtabellen nachschlagen.

Im nächsten Abschnitt sehen wir uns eine Indexstruktur an, die diese Beschrän-
kungen nicht aufweist.

SSTables und LSM-Bäume
In Abbildung 3-3 ist jedes protokollstrukturierte Speichersegment eine Sequenz
von Schlüssel-Wert-Paaren. Diese Paare erscheinen in der Reihenfolge, in der sie
geschrieben wurden, und Werte, die weiter hinten in der Protokolldatei stehen,
haben Vorrang vor den Werten für denselben Schlüssel weiter vorn im Protokoll.
Abgesehen davon spielt die Reihenfolge der Schlüssel-Wert-Paare in der Datei
keine Rolle.

Jetzt können wir eine einfache Änderung am Format unserer Segmentdateien vor-
nehmen: Wir fordern, dass die Sequenz der Schlüssel-Wert-Paare nach dem
Schlüssel sortiert wird. Auf den ersten Blick sieht es so aus, als ob diese Forderung
unsere Fähigkeit unterbindet, sequenzielle Schreibvorgänge zu verwenden, doch
dazu kommen wir gleich. Wir nennen dieses Format Sorted String Table (kurz
SSTable). Des Weiteren fordern wir, dass jeder Schlüssel nur einmal innerhalb je-
der zusammengeführten Segmentdatei erscheinen darf (das sichert bereits die
Komprimierung ab). SSTables bieten mehrere entscheidende Vorteile gegenüber
Protokollsegmenten mit Hashindizes:

1. Das Zusammenführen von Segmenten ist einfach und effizient, selbst wenn
die Dateien größer als der verfügbare Arbeitsspeicher sind. Das Konzept ent-
spricht dem beim Mergesort-Algorithmus verwendeten Vorgang und ist in
Abbildung 3-4 zu sehen: Man liest zunächst die Eingabedateien nebeneinan-
der ein, sucht nach dem ersten Schlüssel in jeder Datei, kopiert den kleinsten

 Datenstrukturen, auf denen Ihre Datenbank beruht | 81

Schlüssel (entsprechend der Sortierreihenfolge) in die Ausgabedatei und wie-
derholt das Ganze. Dabei entsteht eine neue zusammengeführte Segmentda-
tei, die ebenfalls nach dem Schlüssel sortiert ist.

Abbildung 3-4: Zusammenführen mehrerer SSTable-Segmente, wobei nur der neueste Wert für
jeden Schlüssel beibehalten wird

Wie sieht es aus, wenn der gleiche Schlüssel in mehreren Eingabesegmenten
vorkommt? Denken Sie daran, dass jedes Segment alle Werte enthält, die in
einer bestimmten Zeitspanne in die Datenbank geschrieben wurden. Das
heißt, dass alle Werte in dem einen Eingabesegment neuer sein müssen als
alle Werte im anderen Segment (unter der Annahme, dass wir immer aufein-
anderfolgende Segmente zusammenführen). Wenn mehrere Segmente den
gleichen Schlüssel enthalten, können wir den Wert aus dem neuesten Seg-
ment behalten und die Werte in älteren Segmenten verwerfen.

2. Um einen bestimmten Schlüssel in der Datei zu finden, brauchen Sie nicht
mehr den kompletten Index aller Schlüssel im Speicher zu halten. Sehen Sie
sich das Beispiel in Abbildung 3-5 an: Angenommen, Sie suchen nach dem
Schlüssel handiwork, kennen aber nicht den genauen Offset dieses Schlüssels
in der Segmentdatei. Allerdings kennen Sie die Offsets für die Schlüssel hand-
bag und handsome, und aufgrund der Sortierung ist bekannt, dass handiwork
zwischen diesen beiden liegen muss. Das heißt, Sie können zum Offset für
handbag springen und von dort aus suchen, bis Sie handiwork finden (oder
eben nicht, wenn der Schlüssel nicht in der Datei vorhanden ist).

handful: 44662handbag: 8786 handicap: 70836

handiwork: 45521 handkerchief: 20952 handlebars: 3869

handprinted: 33632

handful: 44662 handicap: 70836 handiwork: 45521 handlebars: 3869

handprinted: 33632

handful: 42307 handicap: 67884 handiwork: 16912

handkerchief: 20952 handprinted: 15725

handful: 40308handbag: 8786 handicap: 65995 handkerchief: 16324

handlebars: 3869 handprinted: 11150

Komprimieren und Zusammenführen

Se
gm

en
t 1

Se
gm

en
t 2

Se
gm

en
t 3

Zu
sa

m
m

en
-

ge
fü

hr
t 1

, 2
, 3

82 | Kapitel 3: Speichern und Abrufen

Abbildung 3-5: Eine SSTable mit einem speicherinternen Index

Trotzdem brauchen Sie noch einen speicherinternen Index, der Ihnen die Off-
sets für einige der Schlüssel angibt, aber er kann dünnbesetzt ausfallen: ein
Schlüssel für alle paar Kilobyte der Segmentdatei genügt, weil sich einige Kilo-
byte sehr schnell durchsuchen lassen.1

3. Da Leseanfragen ohnehin über mehrere Schlüssel-Wert-Paare im angefragten
Bereich scannen müssen, ist es möglich, diese Datensätze in einem Block zu
gruppieren und zu komprimieren, bevor die Daten auf die Festplatte geschrie-
ben werden (durch den schattierten Bereich in Abbildung 3-5 angezeigt). Je-
der Eintrag des reduzierten speicherinternen Index zeigt dann auf den Beginn
eines komprimierten Blocks. Abgesehen von einer Einsparung an Speicher-
platz verringert die Komprimierung auch den E/A-Bandbreitenbedarf.

SSTables konstruieren und verwalten

So weit, so gut – doch wie bekommen Sie Ihre Daten überhaupt erst einmal nach
Schlüsseln sortiert? Unsere eingehenden Schreibvorgänge können in beliebiger
Reihenfolge auftreten.

Es ist durchaus möglich, eine sortierte Struktur auf der Festplatte zu verwalten
(siehe Abschnitt »B-Bäume« auf Seite 85), doch im Arbeitsspeicher lässt sie sich
einfacher verwalten. Es gibt viele etablierte Baumdatenstrukturen, die Sie verwen-
den können, beispielsweise Rot-Schwarz-Bäume oder AVL-Bäume [2]. Mit diesen
Datenstrukturen können Sie Schlüssel in jeder Reihenfolge einfügen und sie in sor-
tierter Reihenfolge wieder auslesen.

1 Hätten alle Schlüssel eine feste Größe, könnte man eine binäre Suche auf der Segmentdatei ausführen
und auf den speicherinternen Index gänzlich verzichten. Allerdings sind die Schlüssel in der Praxis
normalerweise unterschiedlich lang, sodass sich schwer sagen lässt, wo der eine Datensatz endet und
der nächste beginnt, wenn man keinen Index hat.

handful: 44662handbag: 8786

handicap: 70836 handiwork: 45521 handkerchief: 20952

handlebars: 3869 handprinted: 33632

handsome: 86478 handwaving: 44005 handwriting: 22846

hand: 91541………

………

Dünnbesetzter Index
im Arbeitsspeicher

ko
m

pr
im

ie
rb

ar
er

 B
lo

ckSchlüssel

… …

hammock 100491

handbag 102134

handsome 104667

hangout 106812

… …

Sortierte Segmentdatei (SSTable) auf der Festplatte

Byteoffset

 Datenstrukturen, auf denen Ihre Datenbank beruht | 83

Unsere Storage-Engine können wir nun wie folgt zum Laufen bringen:

• Wenn Schreibdaten eintreffen, werden diese in eine speicherinterne balan-
cierte Baumdatenstruktur eingefügt (zum Beispiel in einen Rot-Schwarz-
Baum). Dieser speicherinterne Baum wird auch als MemTable bezeichnet.

• Wenn die MemTable größer als ein bestimmter Schwellenwert wird – typi-
scherweise einige Megabyte –, wird sie als SSTable-Datei auf die Festplatte
geschrieben. Das lässt sich effizient bewerkstelligen, weil der Baum bereits die
Schlüssel-Wert-Paare nach Schlüsseln sortiert verwaltet. Die neue SSTable-
Datei wird zum neuesten Segment der Datenbank. Während die SSTable auf
Festplatte geschrieben wird, können weitere Schreibvorgänge in eine neue
MemTable-Instanz erfolgen.

• Um eine Leseanforderung zu bedienen, wird zuerst versucht, den Schlüssel in
der MemTable zu finden, dann im neuesten Segment auf der Festplatte, dann
im nächst älteren Segment usw.

• Gelegentlich werden im Hintergrund die Segmentdateien zusammengeführt
und komprimiert, um überschriebene oder gelöschte Werte zu verwerfen.

Dieser Ansatz funktioniert gut. Es leidet nur an einem Problem: Wenn die Daten-
bank abstürzt, gehen die letzten Schreibvorgänge (die zwar in der MemTable ste-
hen, aber noch nicht auf Festplatte geschrieben wurden) verloren. Um dieses Pro-
blem zu vermeiden, können wir ein separates Protokoll auf der Festplatte führen,
in das jeder Schreibvorgang sofort angefügt wird, genau wie im vorherigen Ab-
schnitt. Dieses Protokoll ist nicht sortiert, doch das spielt keine Rolle, weil sein
einziger Zweck darin besteht, die MemTable nach einem Absturz wiederherzustel-
len. Jedes Mal, wenn die MemTable in eine SSTable übernommen wird, kann das
entsprechende Protokoll verworfen werden.

Einen LSM-Baum aus SSTables erstellen

Der hier beschriebene Algorithmus ist praktisch das, was in LevelDB [6] und
RocksDB [7] verwendet wird. Diese Storage-Engine-Bibliotheken für Schlüssel-
Wert-Paare sind dafür konzipiert, in andere Anwendungen eingebettet zu werden.
Unter anderem lässt sich LevelDB in Riak als Alternative zu Bitcask einsetzen.
Ähnliche Storage-Engines werden in Cassandra und HBase verwendet [8], die
beide durch den BigTable-Artikel von Google [9] inspiriert wurden (der die Be-
griffe SSTable und MemTable eingeführt hat).

Ursprünglich wurde diese Indexstruktur von Patrick O’Neil et al. unter dem Na-
men Log-Structured Merge-Tree (oder LSM-Tree) [10] beschrieben, aufbauend auf
einer früheren Arbeit an protokollstrukturierten Dateisystemen [11]. Storage-En-
gines, die auf diesem Prinzip von Zusammenführen und Komprimieren sortierter
Dateien aufbauen, werden oftmals LSM-Storage-Engines genannt.

Lucene, eine von Elasticsearch und Solr eingesetzte Index-Engine für Volltext-
suchen arbeitet nach einer ähnlichen Methode, um ihr Begriffswörterbuch zu spei-

84 | Kapitel 3: Speichern und Abrufen

chern [12, 13]. Ein Volltextindex ist wesentlich komplexer als ein Schlüssel-Wert-
Index, beruht aber auf einer ähnlichen Idee: Finde für ein gegebenes Wort in einer
Suchabfrage alle Dokumente (Webseiten, Produktbeschreibungen usw.), in denen
das Wort vorkommt. Dies wird mit einer Schlüssel-Wert-Struktur implementiert,
bei der der Schlüssel ein Wort (ein Begriff) ist und der Wert die Liste der IDs aller
Dokumente, die das Wort enthalten (die Postingsliste). In Lucene wird diese Ab-
bildung von der Begriffs- auf die Postingsliste in SSTable-ähnlichen sortierten Da-
teien gehalten, die bei Bedarf im Hintergrund zusammengeführt werden [14].

Performanceoptimierungen

Wie immer ist viel Detailarbeit erforderlich, um in der Praxis eine gute Leistung
der Storage-Engine zu erreichen. Zum Beispiel kann der LSM-Baum-Algorithmus
beim Nachschlagen von Schlüsseln, die in der Datenbank nicht existieren, lang-
sam sein: Sie müssen die MemTable überprüfen, dann die Segmente bis zurück
zum ältesten (und möglicherweise jedes einzelne von der Festplatte lesen), bevor
Sie sicher sein können, dass der Schlüssel nicht existiert. Um derartige Zugriffe zu
optimieren, verwenden Storage-Engines oftmals zusätzliche Bloom-Filter [15]. (Ein
Bloom-Filter ist eine speichereffiziente Datenstruktur, um den Inhalt einer Menge
anzunähern. Er kann sagen, ob ein Schlüssel in der Datenbank fehlt, und spart so-
mit viele unnötige Festplattenleseoperationen für nicht existierende Schlüssel.)

Es gibt auch andere Strategien, um Reihenfolge und Timing zu bestimmen, wie
SSTables komprimiert und zusammengeführt werden. Die gängigsten Optionen
sind eine sogenannte size-tiered (nach Dateigröße gruppierte) oder eine leveled (in
Ränge gruppierte) Komprimierung. Die Bibliotheken LevelDB und RocksDB ver-
wenden ranggruppierte Komprimierung (der Name von LevelDB ist vom »leveled«
Ansatz hergeleitet), HBase verwendet Dateigrößengruppierung, und Cassandra
unterstützt beide [16]. Bei der nach Dateigröße gruppierten Komprimierung wer-
den neuere und kleinere SSTables stufenweise zu älteren und größeren SSTables
zusammengeführt. Bei der ranggruppierten Komprimierung wird hingegen der
Schlüsselbereich in kleinere SSTables aufgeteilt, und ältere Daten werden in sepa-
rate »Ränge« verschoben, wodurch die Komprimierung inkrementell ablaufen
kann und deshalb weniger Festplattenplatz benötigt.

Obwohl viele Feinheiten zu beachten sind, ist die Grundidee von LSM-Bäumen –
eine Kaskade von SSTables zu verwalten, die im Hintergrund zusammengeführt
werden – einfach und effektiv. Selbst wenn die Datenmenge wesentlich größer als
der verfügbare Arbeitsspeicher ist, funktioniert das Verfahren weiterhin gut. Da
die Daten in sortierter Reihenfolge gespeichert werden, können Sie Bereichsabfra-
gen effizient durchführen (alle Schlüssel oberhalb eines Minimums bis zu einem
bestimmten Maximum scannen), und weil die Festplattenschreibvorgänge se-
quenziell erfolgen, kann der LSM-Baum einen bemerkenswert hohen Schreib-
durchsatz unterstützen.

 Datenstrukturen, auf denen Ihre Datenbank beruht | 85

B-Bäume
Die protokollstrukturierten Indizes, die wir bisher besprochen haben, gewinnen
zwar an Akzeptanz, sind aber nicht die gebräuchlichste Indexart. Am weitesten
verbreitet ist eine ganz andere Indexstruktur: der B-Baum.

Die 1970 eingeführten [17] und kaum 10 Jahre später als »allgegenwärtig« [18] ti-
tulierten B-Bäume haben sich im Laufe der Zeit gut bewährt. In nahezu allen rela-
tionalen Datenbanken bleiben sie die Standardindeximplementierung, und viele
nichtrelationale Datenbanken nutzen sie ebenfalls.

Wie SSTables halten B-Bäume Schlüssel-Wert-Paare nach dem Schlüssel sortiert,
was effiziente Schlüssel-Wert-Nachschlageoperationen und Bereichsabfragen er-
möglicht. Doch an dieser Stelle hört die Ähnlichkeit auf: B-Bäume haben eine
gänzlich andere Entwurfsphilosophie.

Die protokollstrukturierten Indizes, wie sie weiter vorn zu sehen waren, gliedern
die Datenbank in Segmente variabler Größe von typischerweise mehreren Mega-
byte und schreiben ein Segment immer sequenziell. Im Unterschied dazu gliedern
B-Bäume die Datenbank in Blöcke oder Seiten fester Größe von traditionell 4 KB
(manchmal auch mehr) und lesen oder schreiben jeweils eine Seite auf einmal.
Dieses Design kommt der zugrunde liegenden Hardware näher, da Festplatten
ebenfalls in Blöcke fester Größe unterteilt sind.

Jede Seite kann mit einer Adresse oder einer Position identifiziert werden, wo-
durch eine Seite auf eine andere verweisen kann – ähnlich einem Zeiger, aber auf
Festplatte statt im Arbeitsspeicher. Diese Seitenreferenzen können wir verwenden,
um einen Baum von Seiten zu konstruieren, wie Abbildung 3-6 veranschaulicht.

Abbildung 3-6: Nachschlagen eines Schlüssels mit einem B-Baum-Index

100ref ref 200 ref 300 ref 400 ref 500 ref

111ref ref 135 ref 152 ref 169 ref 190 ref

210ref ref 230 ref 250 ref 270 ref 290 ref

250 val 251 val 252 val 253 val 254 val

key < 100
key ≥ 500
400 ≤ key < 500
300 ≤ key < 400100 ≤ key < 200 200 ≤ key < 300

250 ≤ key < 270

»Nachschlagen von user_id = 251«

… … …

… … …

… … …

… …

86 | Kapitel 3: Speichern und Abrufen

Eine bestimmte Seite ist als Wurzel des B-Baums festgelegt. Hier beginnen Sie im-
mer, wenn Sie nach einem Schlüssel im Index suchen. Die Seite enthält mehrere
Schlüssel und Referenzen auf untergeordnete Seiten. Jede untergeordnete Seite ist
für einen zusammenhängenden Schlüsselbereich zuständig, und die Schlüssel zwi-
schen den Referenzen zeigen an, wo die Grenzen zwischen diesen Bereichen liegen.

Da wir im Beispiel, das Abbildung 3-6 zeigt, nach dem Schlüssel 251 suchen, wis-
sen wir, dass wir der Seitenreferenz zwischen den Grenzen 200 und 300 folgen
müssen. Dies bringt uns zu einer ähnlich aussehenden Seite, die den Bereich von
200 bis 300 weiter in Teilbereiche unterteilt.

Schließlich gelangen wir zu einer Seite, die einzelne Schlüssel enthält (eine Blatt-
seite), die entweder den Wert für jeden Schlüssel inline speichert oder die Seiten
referenziert, wo die eigentlichen Werte gefunden werden können.

Die Anzahl der Referenzen auf untergeordnete Seiten in einer Seite des B-Baums
ist der Verzweigungsgrad. So ist im Beispiel von Abbildung 3-6 der Verzweigungs-
grad gleich 6. In der Praxis hängt der Verzweigungsgrad davon ab, wie viele Bytes
benötigt werden, um die Seitenreferenzen und die Bereichsgrenzen zu speichern;
typischerweise beträgt der Verzweigungsgrad mehrere Hundert.

Abbildung 3-7: Wachsen eines B-Baums durch Teilen einer Seite

Wenn Sie den Wert für einen vorhandenen Schlüssel in einem B-Baum aktualisie-
ren wollen, suchen Sie nach der Blattseite, die diesen Schlüssel enthält, ändern den
Wert in dieser Seite und schreiben die Seite zurück auf die Festplatte (Verweise
von anderen Seiten auf diese Seite bleiben dabei gültig). Möchten Sie einen neuen
Schlüssel hinzufügen, müssen Sie die Seite suchen, deren Bereich den neuen
Schlüssel umschließt, und ihn zu dieser Seite hinzufügen. Wenn in der Seite nicht
genügend Platz für den neuen Schlüssel ist, wird sie in zwei halbvolle Seiten geteilt

310ref ref 333 ref 345 ref (Reserve)

333 val 335 val 337 val 340 val 342 val

333 ≤ key < 345
… … …

310ref ref 333 ref 337 ref (Reserve)345 ref

(Reserve)333 val 334 val 335 val

(Reserve)337 val 340 val 342 val

333 ≤ key < 337 337 ≤ key < 345

… … …

Nach Hinzufügen von Schlüssel 334:

 Datenstrukturen, auf denen Ihre Datenbank beruht | 87

und die übergeordnete Seite wird aktualisiert, um die neue Unterteilung der
Schlüsselbereiche zu erfassen – siehe Abbildung 3-7.2

Dieser Algorithmus stellt sicher, dass der Baum balanciert bleibt: Ein B-Baum mit
n Schlüsseln hat immer eine Tiefe von O(log n). Die meisten Datenbanken passen
in einen B-Baum, der drei oder vier Ebenen tief ist. Somit brauchen Sie nicht vielen
Seitenverweisen zu folgen, um die gesuchte Seite zu finden. (Ein Baum mit vier
Ebenen, 4 KB großen Seiten und mit einem Verzweigungsfaktor von 500 kann bis
zu 256 TB speichern.)

B-Bäume zuverlässig machen

Beim Schreiben in einem B-Baum wird prinzipiell eine Seite auf der Festplatte mit
den neuen Daten überschrieben. Es wird davon ausgegangen, dass sich beim
Überschreiben die Position der Seite nicht ändert; d.h., alle Referenzen auf diese
Seite bleiben intakt, wenn die Seite überschrieben wird. Dieses Vorgehen steht in
krassem Kontrast zu protokollstrukturierten Indizes wie zum Beispiel LSM-Bäu-
men, die ausschließlich an Dateien anfügen (und letztlich veraltete Dateien lö-
schen), aber niemals Dateien direkt modifizieren.

Das Überschreiben einer Seite auf Festplatte können Sie sich als echte Hard-
wareoperation vorstellen. Auf einer magnetischen Festplatte verschiebt die Steue-
rung den Schreib-Lese-Kopf zur richtigen Spur, wartet auf die richtige Position der
sich drehenden Magnetplatten und überschreibt dann den jeweiligen Sektor mit
neuen Daten. Auf SSDs sind die Vorgänge etwas komplizierter, was mit dem Um-
stand zusammenhängt, dass eine SSD ziemlich große Blöcke auf dem Speicherchip
auf einmal löschen und neu beschreiben muss [19].

Darüber hinaus ist es bei manchen Vorgängen erforderlich, mehrere verschiedene
Seiten zu überschreiben. Wenn Sie zum Beispiel eine Seite teilen, weil sie beim
Einfügen zu voll geworden wäre, müssen Sie die beiden geteilten Seiten schreiben
und außerdem deren übergeordnete Seite überschreiben, um die Referenzen auf
die beiden untergeordneten Seiten zu aktualisieren. Diese Operation ist gefährlich,
denn wenn die Datenbank abstürzt, nachdem nur einige der Seiten geschrieben
worden sind, ist das Ergebnis ein beschädigter Index (zum Beispiel kann eine ver-
waiste Seite entstehen, die zu keiner übergeordneten Seite mehr gehört).

Um die Datenbank gegenüber Abstürzen robust zu machen, verwalten Implemen-
tierungen von B-Bäumen üblicherweise eine zusätzliche Datenstruktur auf der Fest-
platte: ein Write-Ahead-Log (WAL) – auch als Wiederholungsprotokoll (Redo-Log)
bekannt. Dies ist eine Datei, an die jede B-Baum-Modifikation angefügt werden
muss, bevor sie auf die Seiten des Baums selbst angewendet werden darf. Wenn
die Datenbank nach einem Absturz wieder gestartet wird, lässt sich anhand dieses
Protokolls der B-Baum in einen konsistenten Zustand wiederherstellen [5, 20].

2 Einen neuen Schlüssel kann man relativ einfach in einen B-Baum einfügen; einen Schlüssel zu löschen
(und dabei den Baum balanciert zu halten), ist dagegen etwas komplizierter [2].

88 | Kapitel 3: Speichern und Abrufen

Beim direkten Aktualisieren von Seiten ist zusätzlich zu berücksichtigen, dass eine
sorgfältige Nebenläufigkeitssteuerung erforderlich ist, wenn mehrere Threads
gleichzeitig auf den B-Baum zugreifen – andernfalls kann ein Thread den Baum in
einem inkonsistenten Zustand vorfinden. Dies geschieht in der Regel dadurch,
dass die Datenstrukturen des Baums mit Indexsperren (engl. Latches; leichtge-
wichtige Sperren) geschützt werden. Protokollstrukturierte Ansätze sind in dieser
Hinsicht einfacher, weil sie das gesamte Zusammenführen im Hintergrund abwi-
ckeln, ohne mit eingehenden Abfragen zu kollidieren, und alte Segmente von Zeit
zu Zeit atomar gegen neue Segmente austauschen.

Optimierungen von B-Bäumen

Da B-Bäume schon so lange existieren, überrascht es nicht, dass im Lauf der Jahre
viele Optimierungen entwickelt worden sind. Um nur ein paar zu nennen:

• Anstatt Seiten zu überschreiben und ein WAL für die Wiederherstellung bei
Abstürzen zu verwalten, verwenden manche Datenbanken (wie LMDB) ein
Kopieren-beim-Schreiben-Prinzip [21]. Eine modifizierte Seite wird an einen
anderen Ort geschrieben, und im Baum wird eine neue Version der übergeord-
neten Seiten angelegt, die auf die neue Position verweisen. Dieses Konzept ist
auch nützlich für die Kontrolle der Nebenläufigkeit, wie der Abschnitt
»Snapshot-Isolation und Repeatable Read« auf Seite 252 erläutert.

• Auf den Seiten lässt sich Platz sparen, wenn man nicht den gesamten Schlüssel
speichert, sondern ihn abkürzt. Speziell auf Seiten im Inneren des Baums müs-
sen Schlüssel nur so viele Informationen liefern, dass sie als Grenzen zwischen
Schlüsselbereichen fungieren können. Werden mehr Schlüssel auf eine Seite
gepackt, kann der Baum einen höheren Verzweigungsgrad und folglich weni-
ger Ebenen haben.3

• Im Allgemeinen können Seiten an beliebigen Stellen auf der Festplatte unter-
gebracht werden; es gibt keinerlei Forderungen, dass Seiten mit benachbarten
Schlüsselbereichen auch auf der Festplatte nahe beieinanderliegen müssten.
Wenn eine Abfrage über einen großen Teil des Schlüsselbereichs in sortierter
Reihenfolge scannen muss, ist dieses seitenorientierte Layout eventuell ineffi-
zient, weil eine Festplattenpositionierung für jede gelesene Seite erforderlich
sein kann. Viele B-Baum-Implementierungen versuchen deshalb, den Baum so
anzuordnen, dass die Blattseiten auf der Festplatte in sequenzieller Reihen-
folge liegen. Allerdings ist es schwierig, diese Reihenfolge aufrechtzuerhalten,
wenn der Baum wächst. Dagegen schreiben LSM-Bäume beim Zusammenfüh-
ren große Segmente des Speicherinhalts in einem Zug, sodass es für sie einfa-
cher ist, aufeinanderfolgende Schlüssel nahe beieinander auf der Festplatte
abzulegen.

3 Diese Variante wird auch als B+-Baum bezeichnet, obwohl die Optimierung so häufig vorkommt, dass
man diese Variante oftmals nicht von anderen B-Baum-Varianten unterscheidet.

 Datenstrukturen, auf denen Ihre Datenbank beruht | 89

• Zusätzliche Zeiger können in den Baum eingefügt werden. Zum Beispiel kann
jede Blattseite Verweise auf ihre gleichgeordneten Seiten nach links und rechts
haben, sodass sich Schlüssel der Reihe nach suchen lassen, ohne zu überge-
ordneten Seiten zurückspringen zu müssen.

• B-Baum-Varianten wie zum Beispiel fraktale Bäume [22] orientieren sich zum
Teil an protokollstrukturierten Konzepten, um die Anzahl der Festplattenpo-
sitionierungen zu verringern (sie haben allerdings nichts mit Fraktalen zu tun).

B-Bäume und LSM-Bäume im Vergleich
Obwohl B-Baum-Implementierungen im Allgemeinen ausgereifter sind als LSM-
Baum-Implementierungen, sind LSM-Bäume auch wegen ihrer Performanceeigen-
schaften interessant. Als Faustregel gilt, dass Schreibvorgänge bei LSM-Bäumen
und Lesevorgänge bei B-Bäumen typischerweise schneller sind [23]. Lesevorgänge
sind bei LSM-Bäumen in der Regel langsamer, weil sie mehrere verschiedene Da-
tenstrukturen und SSTables auf verschiedenen Komprimierungsrängen prüfen
müssen.

Allerdings sind Ergebnisse von Benchmarks oftmals nicht schlüssig und hängen
stark von Details der Arbeitsbelastung ab. Um brauchbare Vergleiche durchführen
zu können, müssen Sie die Systeme mit Ihrer konkreten Arbeitsbelastung testen.
In diesem Abschnitt gehen wir kurz auf einige Dinge ein, die Sie bei Leistungsmes-
sungen einer Storage-Engine beachten sollten.

Vorteile von LSM-Bäumen

Ein B-Baum-Index muss jedes Datenelement mindestens zweimal schreiben: ein-
mal in das Write-Ahead-Log und einmal auf die Baumseite selbst (und vielleicht
erneut, wenn Seiten geteilt werden). Außerdem entsteht ein Overhead, weil eine
ganze Seite geschrieben werden muss, selbst wenn sich auf dieser Seite nur wenige
Bytes geändert haben. Manche Storage-Engines überschreiben dieselbe Seite sogar
zweimal, damit zum Beispiel bei einem Stromausfall keine nur teilweise aktuali-
sierte Seite zurückbleibt [24, 25].

Protokollstrukturierte Indizes schreiben die Daten ebenfalls mehrmals neu, was
mit wiederholtem Komprimieren und Zusammenführen von SSTables zusammen-
hängt. Dieser Effekt – ein Schreibvorgang in der Datenbank führt zu mehreren
Schreibvorgängen auf der Festplatte während der Lebenszeit der Datenbank –
wird als Write Amplification (Schreibverstärkung) bezeichnet. Dies ist besonders
kritisch bei SSD-Laufwerken, bei denen die Anzahl der Schreibzyklen technolo-
gisch begrenzt ist, Blöcke also nicht beliebig oft überschrieben werden können, be-
vor die Speicherzellen verschlissen sind.

Bei schreibintensiven Anwendungen kann der Engpass die Rate sein, mit der die
Datenbank auf Festplatte schreiben kann. In diesem Fall schlägt sich die Write
Amplification direkt in Performancekosten nieder: Je mehr eine Storage-Engine

90 | Kapitel 3: Speichern und Abrufen

auf Festplatte schreibt, desto weniger Schreiboperationen pro Sekunde kann sie
innerhalb der verfügbaren Festplattenbandbreite verarbeiten.

Darüber hinaus sind LSM-Bäume typischerweise in der Lage, einen höheren
Schreibdurchsatz als B-Bäume aufrechtzuerhalten, einerseits, weil sie manchmal
eine geringere Write Amplification haben (obwohl diese von der Konfiguration
der Storage-Engine und der Arbeitslast abhängt), und andererseits, weil sie se-
quenziell kompakte SSTable-Dateien schreiben, anstatt mehrere Seiten im Baum
überschreiben zu müssen [26]. Dieser Unterschied ist besonders wichtig bei mag-
netischen Festplatten, wo sequenzielle Schreiboperationen wesentlich schneller als
wahlfreie Schreiboperationen sind.

LSM-Bäume können besser komprimiert werden und ergeben folglich oftmals
kleinere Dateien auf der Festplatte als B-Bäume. B-Baum-Storage-Engines nutzen
aufgrund der Fragmentierung nicht den gesamten Festplattenplatz aus: Wenn eine
Seite geteilt wird oder wenn eine Zeile nicht auf eine vorhandene Seite passt, bleibt
Platz in einer Seite ungenutzt. Da LSM-Bäume nicht seitenorientiert sind und re-
gelmäßig SSTables neu schreiben, um die Fragmentierung zu beseitigen, haben sie
einen geringeren Speicheroverhead, und zwar insbesondere, wenn sie ranggrup-
pierte Komprimierung verwenden [27].

Auf vielen SSDs verwendet die Firmware intern einen protokollstrukturierten Al-
gorithmus, um wahlfreie Schreibvorgänge in sequenzielle Schreibvorgänge auf den
zugrunde liegenden Speicherchips umzuwandeln, was dazu führt, dass sich das
Schreibmuster der Storage-Engine weniger stark bemerkbar macht [19]. Allerdings
sind eine geringere Write Amplification und verringerte Fragmentierung bei SSDs
trotzdem von Vorteil: Die kompaktere Darstellung der Daten erlaubt mehr Lese-
und Schreibzugriffe innerhalb der verfügbaren E/A-Bandbreite.

Nachteile von LSM-Bäumen

Nachteilig bei der protokollstrukturierten Speicherung ist, dass der Komprimie-
rungs- und Zusammenführungsvorgang manchmal die Performance von laufen-
den Lese- und Schreiboperationen beeinträchtigen kann. Selbst wenn Storage-En-
gines versuchen, die Komprimierung inkrementell auszuführen und ohne
gleichzeitige Zugriffe zu beeinflussen, kann es durch die begrenzten Ressourcen
von Festplatten leicht passieren, dass eine Anforderung warten muss, während die
Festplatte einen umfangreichen Komprimierungsvorgang abschließt. Der Einfluss
auf den Durchsatz und die mittlere Reaktionszeit ist normalerweise gering, doch
bei höheren Perzentilen (siehe Abschnitt »Performance beschreiben« auf Seite 14)
kann die Reaktionszeit von Anfragen an protokollstrukturierte Storage-Engines
manchmal ziemlich lang sein, und B-Bäume können einheitlichere Performance
zeigen [28].

Ein anderes Problem bei der Komprimierung entsteht bei einem hohen Schreib-
durchsatz: Die endliche Schreibbandbreite der Festplatte müssen sich der anfäng-

 Datenstrukturen, auf denen Ihre Datenbank beruht | 91

liche Schreibvorgang (Protokollieren und Schreiben einer MemTable auf die Fest-
platte) und die im Hintergrund laufenden Komprimierungsthreads teilen. Beim
Schreiben in eine leere Datenbank steht die volle Bandbreite für den anfänglichen
Schreibvorgang zur Verfügung, doch je größer die Datenbank wird, desto mehr
Bandbreite ist für die Komprimierung erforderlich.

Wenn bei einem hohen Schreibdurchsatz die Komprimierung nicht sorgfältig kon-
figuriert ist, kann die Komprimierung gegebenenfalls nicht mehr mit der Rate der
eingehenden Schreibanforderungen Schritt halten. In diesem Fall wächst die An-
zahl der nicht zusammengeführten Segmente auf der Festplatte, bis kein Festplat-
tenplatz mehr übrig ist. Auch die Leseoperationen laufen langsamer ab, weil sie
mehr Segmentdateien prüfen müssen. Typischerweise drosseln SSTable-basierte
Storage-Engines die eingehenden Schreibanforderungen nicht, selbst wenn die
Komprimierung nicht Schritt halten kann. Diese Situation müssen Sie deshalb ex-
plizit überwachen und erkennen [29, 30].

B-Bäume haben unter anderem den Vorteil, dass jeder Schlüssel an genau einer
Stelle im Index vorhanden ist, während eine protokollstrukturierte Storage-Engine
mehrere Kopien desselben Schlüssels in verschiedenen Segmenten haben kann.
Dieser Aspekt macht B-Bäume attraktiv für Datenbanken, die strenge transaktio-
nale Semantik bieten wollen: In vielen relationalen Datenbanken wird die Trans-
aktionsisolation durch Sperren auf Schlüsselbereichen implementiert, und in ei-
nem B-Baum-Index können diese Sperren unmittelbar dem Baum zugewiesen
werden [5]. In Kapitel 7 kommen wir auf diesen Punkt ausführlich zu sprechen.

B-Bäume sind in der Architektur von Datenbanken tief verwurzelt und bieten eine
durchgängig gute Performance für viele Arbeitslasten. Es ist also unwahrschein-
lich, dass sie in absehbarer Zeit von der Bildfläche verschwinden werden. In neue-
ren Datenspeichern werden protokollstrukturierte Indizes zunehmend beliebter.
Da es keine Regel gibt, nach der Sie schnell und einfach bestimmen könnten, wel-
cher Typ von Storage-Engine für Ihren Anwendungsfall besser geeignet ist, lohnt
es sich, empirisch zu testen.

Andere Indizierungsstrukturen
Bislang haben wir uns nur mit Schlüssel-Wert-Indizes beschäftigt, die etwa einem
Primärschlüsselindex im rationalen Modell entsprechen. Ein Primärschlüssel iden-
tifiziert eindeutig eine Zeile in einer relationalen Tabelle, ein Dokument in einer
Dokumentendatenbank oder einen Knoten in einer Graphdatenbank. Andere Da-
tensätze in der Datenbank können auf diese Zeile, das Dokument oder den Kno-
ten mit dem entsprechenden Primärschlüssel (oder der ID) verweisen, und der In-
dex dient dazu, solche Verweise aufzulösen.

Es ist auch üblich, sekundäre Indizes anzulegen. In relationalen Datenbanken kön-
nen Sie mehrere sekundäre Indizes auf derselben Tabelle mit der Anweisung CRE-
ATE INDEX anlegen. Oftmals sind solche Indizes entscheidend, um Joins effizient

92 | Kapitel 3: Speichern und Abrufen

ausführen zu können. Zum Beispiel würden Sie in Abbildung 2-1 von Kapitel 2
höchstwahrscheinlich einen sekundären Index auf den user_id-Spalten einrichten,
um effizient alle Zeilen zu finden, die in jeder der Tabellen zum selben Benutzer
gehören.

Ein sekundärer Index lässt sich leicht aus einem Schlüssel-Wert-Index konstruie-
ren. Der Unterschied zu einem Primärindex besteht vor allem darin, dass Schlüssel
nicht eindeutig sind; d.h., es kann viele Zeilen (bzw. Dokumente oder Knoten)
mit dem gleichen Schlüssel geben. Dies lässt sich nach zwei Methoden auflösen:
Entweder macht man jeden Wert im Index zu einer Liste von übereinstimmenden
Zeilenbezeichnern (wie zum Beispiel eine Postings-Liste in einem Volltextindex),
oder man macht jeden Schlüssel eindeutig, indem man ihm einen Zeilenbezeich-
ner anfügt. In jedem Fall können sowohl B-Bäume als auch protokollstrukturierte
Indizes als sekundäre Indizes verwendet werden.

Werte im Index speichern

In einem Index ist es der Schlüssel, wonach Abfragen suchen, doch der Wert kann
zweierlei sein: Er könnte die tatsächlich gesuchte Zeile (bzw. Dokument oder Kno-
ten) sein oder ein Verweis auf die Zeile, die an anderer Stelle gespeichert ist. Im
zweiten Fall ist der Ort, an dem die Zeilen gespeichert werden, die sogenannte
Heap-Datei. Sie speichert die Daten in einer unbestimmten Reihenfolge. (Die
Heap-Datei verwaltet typischerweise den Speicherplatz in einer Weise, die erlaubt,
gelöschte Zeilen später mit neuen Daten zu überschreiben.) Der Ansatz mit Heap-
Datei ist gebräuchlich, weil er doppelte Daten vermeidet, wenn mehrere Sekundä-
rindizes vorhanden sind: Jeder Index verweist einfach auf eine Stelle in der Heap-
Datei, und die eigentlichen Daten werden an einem Ort für sich gespeichert.

Wird ein Wert aktualisiert, ohne den Schlüssel zu ändern, kann der Ansatz mit
Heap-Datei recht effizient sein: Der Datensatz kann an Ort und Stelle überschrie-
ben werden, sofern der neue Wert nicht mehr Platz benötigt als der alte Wert. Die
Situation ist komplizierter, wenn der neue Wert größer ist, denn er muss mögli-
cherweise an eine neue Position im Heap verschoben werden, wo genügend Platz
zur Verfügung steht. In diesem Fall müssen entweder alle Indizes aktualisiert wer-
den, um auf die neue Heap-Position des Datensatzes zu verweisen, oder es wird an
der alten Heap-Position ein Weiterleitungszeiger hinterlassen [5].

In manchen Situationen bedeutet der zusätzliche Sprung vom Index zur Heap-Da-
tei zu viel Einbuße an Performance bei Leseoperationen, sodass es wünschenswert
sein kann, die indizierte Zeile direkt innerhalb eines Index zu speichern. Dies wird
als gruppierter Index (clustered index) bezeichnet. Zum Beispiel ist in der Storage-
Engine InnoDB von MySQL der Primärschlüssel einer Tabelle immer ein gruppier-
ter Index, und Sekundärindizes verweisen auf den Primärschlüssel (statt auf eine
Position in der Heap-Datei) [31]. In SQL Server können Sie pro Tabelle einen
gruppierten Index vorgeben [32].

 Datenstrukturen, auf denen Ihre Datenbank beruht | 93

Ein Kompromiss zwischen einem gruppierten Index (der alle Zeilendaten inner-
halb des Index speichert) und eines nicht gruppierten Index (der innerhalb des In-
dex nur Verweise auf die Daten speichert) wird als abdeckender Index (covering in-
dex) oder Index mit eingeschlossenen Spalten bezeichnet. Er speichert ausgewählte
Spalten einer Tabelle innerhalb des Index [33]. Auf diese Weise lassen sich man-
che Abfragen allein durch Verwendung des Index beantworten (in diesem Fall sagt
man, dass der Index die Abfrage abdeckt) [32].

Wie bei jeder Art von Datenduplizierung können gruppierte und abdeckende Indi-
zes Leseoperationen beschleunigen, doch sie erfordern zusätzlichen Speicher und
können Overhead bei Schreibvorgängen verursachen. Datenbanken müssen zu-
dem zusätzlichen Aufwand betreiben, um transaktionale Garantien durchzuset-
zen, weil Anwendungen keine Inkonsistenzen aufgrund der Duplizierung sehen
sollten.

Mehrspaltige Indizes

Die bisher vorgestellten Indizes bilden nur einen einzelnen Schlüssel auf einen
Wert ab. Das genügt nicht, wenn wir mehrere Spalten einer Tabelle (oder mehrere
Felder in einem Dokument) gleichzeitig abfragen müssen.

Die gebräuchlichste Art eines mehrspaltigen Index ist ein sogenannter zusammen-
gesetzter Index (concatenated index), der einfach mehrere Felder zu einem Schlüs-
sel zusammenfasst, indem eine Spalte an eine andere angefügt wird (wobei die In-
dexdefinition festlegt, in welcher Reihenfolge die Felder verkettet werden). Dies ist
wie bei einem althergebrachten gedruckten Telefonbuch, das einen Index von
(Nachname, Vorname) zur Telefonnummer bietet. Aufgrund der Sortierreihen-
folge eignet sich der Index, um alle Personen mit einem bestimmten Nachnamen
zu finden oder alle Leute mit einer bestimmten Nachname-Vorname-Kombina-
tion. Der Index ist jedoch nutzlos, wenn Sie alle Personen mit einem bestimmten
Vornamen ermitteln wollen.

Mehrdimensionale Indizes sind eine allgemeinere Methode, mehrere Spalten auf
einmal abzufragen, was vor allem für Geodaten/raumbezogene Daten wichtig ist.
Zum Beispiel könnte eine Website für Restaurantsuchen eine Datenbank mit den
Breiten- und Längengradangaben jedes Restaurants führen. Wenn sich ein Benut-
zer die Restaurants auf einer Karte ansieht, muss die Website nach allen Restau-
rants innerhalb des rechteckigen Kartenausschnitts suchen, den der Benutzer ge-
rade betrachtet. Dazu ist eine Abfrage für einen zweidimensionalen Bereich wie im
folgenden Beispiel erforderlich:

SELECT * FROM restaurants WHERE latitude > 51.4946 AND latitude < 51.5079
AND longitude > -0.1162 AND longitude < -0.1004;

Ein standardmäßiger B-Baum- oder LSM-Baum-Index ist nicht in der Lage, derar-
tige Abfragen effizient zu beantworten: Er kann Ihnen entweder alle Restaurants
in einem Bereich von Breitengraden (aber mit beliebigen Längengraden) oder alle

94 | Kapitel 3: Speichern und Abrufen

Restaurants in einem Bereich von Längengraden (aber irgendwo zwischen Nord-
und Südpol) liefern, aber nicht beide gleichzeitig.

Eine Möglichkeit besteht darin, einen zweidimensionalen Ort mithilfe einer raum-
füllenden Kurve in eine einzelne Zahl zu übersetzen und dann einen normalen B-
Baum-Index zu verwenden [34]. Gebräuchlicher sind spezialisierte räumliche Indi-
zes wie zum Beispiel R-Bäume. So implementiert PostGIS Geodatenindizes als R-
Baum mit der Generalized Search Tree-(GiST-)Schnittstelle von PostgreSQL [35].
Aus Platzgründen können wir nicht im Detail auf R-Bäume eingehen, doch gibt es
hierzu jede Menge Literatur.

Interessant sind auch andere Einsatzarten von mehrdimensionalen Indizes, nicht
nur für geografische Orte. Zum Beispiel könnten Sie auf einer E-Commerce-Web-
site einen dreidimensionalen Index auf den Dimensionen (Rot, Grün, Blau) ver-
wenden, um nach Produkten in einem bestimmten Farbenbereich zu suchen, oder
in einer Datenbank mit Wetterbeobachtungen einen zweidimensionalen Index auf
(Datum, Temperatur) einrichten, um nach allen Beobachtungen im Jahr 2013 zu
suchen, bei denen die Temperatur zwischen 25 und 30 °C lag. Mit einem eindi-
mensionalen Index müssten Sie entweder sämtliche Datensätze von 2013 (ohne
Beachtung der Temperatur) durchsuchen und sie dann nach Temperatur filtern
oder umgekehrt. Mit einem zweidimensionalen Index ließen sich die Daten gleich-
zeitig nach Zeitstempel und Temperatur einengen. HyperDex verwendet diese
Technik [36].

Volltextsuche und Fuzzy-Indizes

Alle bisher behandelten Indizes gehen davon aus, dass Sie über genaue Daten ver-
fügen und nach genauen Werten eines Schlüssels oder einem Bereich von Schlüs-
selwerten mit einer Sortierreihenfolge abfragen können. Dagegen erlauben sie Ih-
nen nicht, nach ähnlichen Schlüsseln zu suchen, beispielsweise nach falsch
geschriebenen Wörtern. Eine derartige unscharfe (engl. fuzzy) Abfrage verlangt an-
dere Techniken.

Beispielsweise erlauben es Volltextsuchmaschinen üblicherweise, die Suche nach
einem Wort auf Synonyme des Worts auszudehnen, grammatikalische Variatio-
nen des Worts zu ignorieren und nach nahe beieinanderliegenden Vorkommen
des Worts im selben Dokument zu suchen. Zudem unterstützen sie verschiedene
andere Features, die von der linguistischen Analyse des Texts abhängen. Um mit
Tippfehlern in Dokumenten oder Abfragen zurechtzukommen, ist Lucene in der
Lage, Text nach Wörtern innerhalb einer bestimmten Editierdistanz (auch Le-
venshtein-Distanz) zu suchen (wobei eine Editierdistanz von 1 bedeutet, dass ge-
nau ein Buchstabe hinzugefügt, entfernt oder ersetzt wurde) [37].

Wie in Abschnitt »Einen LSM-Baum aus SSTables erstellen« auf Seite 83 erwähnt,
verwendet Lucene eine SSTable-ähnliche Struktur für sein Begriffswörterbuch.

 Datenstrukturen, auf denen Ihre Datenbank beruht | 95

Diese Struktur benötigt einen kleinen speicherinternen Index, dem Abfragen ent-
nehmen können, bei welchem Offset in der sortierten Datei sie nach einem Schlüs-
sel suchen müssen. In LevelDB ist dieser speicherinterne Index eine schwach be-
setzte Auflistung einiger Schlüssel, während in Lucene der speicherinterne Index
durch einen endlichen Automaten über die Zeichen der Schlüssel – ähnlich einem
Trie (Präfixbaum) – realisiert wird [38]. Dieser Automat lässt sich in einen Le-
venshtein-Automaten transformieren, der eine effiziente Suche nach Wörtern in-
nerhalb einer vorgegebenen Editierdistanz unterstützt [39].

Andere unscharfe Suchtechniken gehen in Richtung Dokumentklassifizierung und
maschinelles Lernen. Weitere Details hierzu finden Sie in Lehrbüchern zur Infor-
mationsgewinnung [zum Beispiel 40].

Alles im Arbeitsspeicher halten

Die bisher in diesem Kapitel besprochenen Datenstrukturen sind alles Antworten
auf Beschränkungen von Festplatten gewesen. Verglichen mit dem Hauptspeicher
ist der Umgang mit Festplatten umständlich. Sowohl bei magnetischen Festplatten
als auch bei SSDs müssen Sie die Daten sorgfältig auf dem Datenträger anordnen,
wenn Sie gute Performance bei Lese- und Schreibvorgängen erzielen wollen. Aller-
dings tolerieren wir diese Unbequemlichkeit, weil Festplatten zwei erhebliche Vor-
teile bieten: Sie sind dauerhaft (ihr Inhalt geht nicht verloren, wenn der Strom ab-
geschaltet wird), und die Kosten pro Gigabyte sind geringer als bei RAM.

Mit billiger werdendem RAM wird das Argument Kosten pro Gigabyte ausge-
höhlt. Viele Datensätze sind einfach nicht sonderlich groß, sodass es durchaus
machbar ist, sie vollständig im Arbeitsspeicher zu halten, eventuell über mehrere
Computer hinweg verteilt. Dies hat zur Entwicklung von speicherinternen Daten-
banken geführt.

Einige speicherinterne Schlüssel-Wert-Speicher wie zum Beispiel Memcached sind
allein für Caching-Zwecke vorgesehen, wo ein Datenverlust durch einen Neustart
des Computers akzeptierbar ist. Andere speicherinterne Datenbanken sind dage-
gen auf Dauerhaftigkeit ausgelegt, die sich mit spezieller Hardware (wie zum Bei-
spiel batteriegestütztem RAM), durch Schreiben eines Änderungsprotokolls auf
Festplatte, durch periodisches Schreiben von Snapshots auf Festplatte oder durch
Replizieren des speicherinternen Zustands auf andere Computer erreichen lässt.
Wird eine speicherinterne Datenbank neu gestartet, muss sie ihren Zustand erneut
laden, und zwar entweder von Festplatte oder über das Netzwerk von einem
Replikat (sofern keine spezielle Hardware verwendet wird). Trotz der Schreibvor-
gänge auf Festplatte handelt es sich immer noch um eine speicherinterne Daten-
bank, weil sie die Festplatte lediglich als Protokoll für Dauerhaftigkeit nutzt und
Lesevorgänge komplett aus dem Arbeitsspeicher bedient. Das Schreiben auf Fest-
platte hat auch Vorteile für den Betrieb: Dateien auf Festplatte lassen sich leicht
von externen Dienstprogrammen sichern, inspizieren und analysieren.

