22

1 Die Eigenschaften der Gase

ner Vielzahl ortlich begrenzter Quellen an die Atmo-
sphire abgegeben. Die Gasmolekiile diffundieren von
der Quelle weg und verteilen sich im Laufe der Zeit
in der Umgebung. Im Allgemeinen wird der Vermi-
schungsprozess durch Luftbewegungen beschleunigt.
Das Entweichen eines Gases aus einem Gefaf$ durch
ein kleines Loch, zum Beispiel aus einem Reifen oder
einem aufgeblasenen Ballon, bezeichnet man als Effu-
sion (siche Abb. 1.8).

iro:o io
(a)
°°\>

ﬁ—
(b)

Abb. 1.8 (a) Der Begriff Diffusion bezeichnet die Ausbreitung
von Molekiilen einer Substanz in einen Raum, der urspriing-
lich von einer anderen Substanz eingenommen wurde. Durch
die Bewegung der Molekdile beider Substanzen diffundiert
jede Substanz in die jeweils andere hinein. (b) Der Begriff Ef-
fusion bezeichnet das Entweichen von Molekiilen aus einem
Gefal} durch ein kleines Loch.

Die Diffusions- und Effusionsraten von Gasen neh-
men mit steigender Temperatur zu, denn beide Pro-
zesse werden durch Molekiilbewegungen hervorgeru-
fen. Aus dem gleichen Grund steigt die Geschwindig-
keit beider Prozesse mit abnehmender Molmasse der
Gase an. Eine einfache mathematische Abhingigkeit
von der Molmasse finden wir aber nur fiir die Effu-
sionsrate, da bei der Effusion im Normalfall nur eine
Molekiilsorte betrachtet wird, wihrend an einer diffu-
sionsbedingten Vermischung mindestens zwei unter-
schiedliche Gase beteiligt sind. Mit der Diffusion wer-
den wir uns erst in Abschn. 6.7 eingehender befassen.

Aus experimentellen Beobachtungen zur Abhingig-
keit der Effusionsrate eines Gases von seiner Molmas-
se leitete Thomas Graham 1833 das Graham’sche Ef-
fusionsgesetz ab:

Bei konstantem Druck und konstanter Temperatur ist
die Effusionsrate eines Gases umgekehrt proportional
zur Quadratwurzel der Molmasse des Gases:

Effusionsrate (1.22)

1
ML/2

Die Effusionsrate entspricht der Anzahl an Molekiilen
(der Stoffmenge in mol), die pro Sekunde aus dem Ge-
fafl entweicht, und sie ist proportional zur Fliche der
Offnung, durch die die Molekiile entweichen: im Fol-
genden gehen wir davon aus, dass die Fliche der Off-
nungen grundsitzlich identisch ist, wenn wir zwei Ef-
fusionsraten miteinander vergleichen.

lllustration 1.6: Das Graham’sche Effusionsgesetz

Das Verhiltnis der Effusionsraten von molekula-
rem Wasserstoff (Molmasse M = 2,016 g mol~!) und
Kohlendioxid (M = 44,01 g mol~!) betrigt unter der
Voraussetzung, dass beide Gase den gleichen Druck
und die gleiche Temperatur aufweisen,

) 1/2
Effusionsrate von H, Mco,
Effusionsrate von CO,

(44,01 gmol~1\""?
~ \ 2,016 gmol-!
= 4,672.

Die Masse des im gleichen Zeitraum aus dem Gefaf3
entweichenden Kohlendioxids ist grofier als die Mas-
se des entweichenden Wasserstoffs, denn obwohl et-
wa fiinfmal so viele Wasserstoffmolekiile pro Zeit-
einheit das Gefaf verlassen, ist die Masse eines Mo-
lekiils Kohlendioxid mehr als zwangzigmal so grof3
ist wie die eines Wasserstoffmolekiils.

Hinweis Wenn Sie nur den Begriff Rate verwenden,
sollten Sie stets angeben, welche Grofie sich zeitlich
andert, denn der Begriff Rate allein ist nicht eindeu-
tig. In diesem Fall handelt es sich um eine Anderung
der Stoffmenge beziehungsweise der Zahl der Mole-
kiile. Der Begriff Effusionsrate bezeichnet genau diese
Grofle.

Selbsttest 1.8

Nehmen Sie an, dass 5,0 g Argon durch Effusion ent-
weichen. Welche Masse Stickstoff wiirde unter densel-
ben Bedingungen entweichen?

[Antwort: 4,2 g]

Die hohe Effusionsrate von Gasen mit einer sehr klei-
nen Molmasse wie Wasserstoff und Helium ist der
Grund dafiir, warum diese sehr leicht durch pord-
se Gefiflwinde (zum Beispiel aus Gummi) entwei-
chen. Die unterschiedlichen Effusionsraten durch po-
rose Barrieren macht man sich auch bei der Herstel-
lung von Kernbrennstében aus Uran zu Nutze, bei der
das seltenere, spaltbare Isotop 2>*U (Anteil 0,720 %)
vom wesentlich hiufigeren 233U getrennt wird. Dabei



wird das Uran in die leicht fliichtige, feste Verbindung
Uranhexafluorid iiberfiihrt. Die unterschiedlichen Ef-
fusionsraten von 23>UF und 28 UF fithren nun zu ei-
ner Anreicherung des leichteren Isotops. Da allerdings
das Verhiltnis der Molmassen beider Substanzen le-
diglich 1,008 betrigt, ist die Effusionsrate von 23UF,
nur um den Faktor 1,008'/2 = 1,004 grofler. Aus die-
sem Grund sind tausende solcher Effusionsprozesse
notwendig, um eine signifikante Anreicherung zu er-
zielen.

Das Graham’sche Effusionsgesetz ergibt sich in ein-
facher Weise aus der kinetischen Gastheorie, denn die
mittlere Geschwindigkeit ¢ der Gasmolekiile ist nach
GL (1.20a) umgekehrt proportional zur Quadratwur-
zel der Molmasse. Da die Effusionsrate, die Zahl der
pro Zeiteinheit durch ein Loch austretenden Molekii-
le, proportional zur Anzahl der Molekiile ist, die die-
se Offnung erreichen (und damit auch proportional zu
deren Geschwindigkeit), ist die Effusionsrate ebenfalls
umgekehrt proportional zu M'/2,

1.2.5 Intermolekulare StoR3e

Die Strecke, die ein Molekiill im Durchschnitt zwi-
schen zwei Stoflen zurticklegt, wird mittlere freie
Weglinge A (lambda) genannt. Die mittlere freie
Weglange der Molekiile in Fliissigkeiten entspricht
nur einem Bruchteil ihres eigenen Durchmessers, da
sie unmittelbar auf ein benachbartes Molekiil treffen,
sobald sie ihre Position auch nur einen Bruchteil ih-
res eigenen Durchmessers verdndern. In Gasen hinge-
gen kann die mittlere freie Weglinge mehrere hundert
Molekiildurchmesser betragen. Wenn wir uns die Mo-
lekiile in einem Gas als Tennisbille vorstellen, dann
wire die mittlere freie Weglange typischerweise in et-
wa so grofd wie die Lénge eines Tennisplatzes. Wie wir
in der folgenden Herleitung 1.2 sehen werden, betrégt
die mittlere freie Wegldnge eines Molekiils in einem
idealen Gas

_ kT
"~ 21/2gp

(1.23)

wobei o (sigma) den Stofiquerschnitt bezeichnet, also
diejenige Fldche eines Molekiils, die am Stof3 beteiligt
ist. Wenn wir nun einen Stof} definieren als ein Ereig-
nis, bei dem sich zwei Molekiile bis auf einen bestimm-
ten Abstand d nahern, dem Molekiildurchmesser (also
das Zweifache ihres Radius), dann gilt o = nd? (siehe
Abb. 1.9).

Zur Berechnung der mittleren freien Wegldnge ge-
hen wir davon aus, dass ein Molekil im Verlauf sei-

1.2 Die kinetische Gastheorie

Durchmesser, d

Radius, d

Abb. 1.9 Um das Sto3verhalten der Molekiile eines idealen
Gases quantitativ beschreiben zu kénnen, betrachtet man die
Molekiile als Zentren von Kugeln mit dem Durchmesser d.

Ein Molekul stoBt mit einem anderen zusammen, wenn sich
letzteres in einem Zylinder mit dem Radius d befindet und
sich beide Molekiile parallel zur Zylinderachse aufeinander zu
bewegen. Der StoBquerschnitt eines Molekdls entspricht der
Querschnittsfliche md? des Zylinders.

ner Bewegung durch den Raum mehrfach mit ande-
ren Molekiilen zusammenstofit. Es gilt

_ mittlere zuriickgelegte Weglinge
mittlere Anzahl der St6f3e

Sowohl den Zihler als auch der Nenner in dieser
Gleichung miissen wir nun durch mathematische
Terme ausdriicken, die physikalische Grof3en enthal-
ten. Beide Komponenten hidngen von der mittleren
Geschwindigkeit der Molekiile ab.

Formulierung des Zdhlers.
Diese Formulierung ist einfach: innerhalb eines Zeit-
intervalls At legt ein Molekiil die Wegstrecke [ = cAt
zuriick.

Formulierung des Nenners.

Im selben Zeitintervall Az durchlauft das Molekiil
einen Zylinder mit dem Volumen ocAt. Sofern sich
ein weiteres Molekiil innerhalb des Zylinders befin-
det, kommt es zum StofS. Wenn wir die Partikelzahl-
dichte des Gases mit N bezeichnen, dann ergibt sich
die Anzahl der Kollisionen aus dem Produkt aus dem
durchlaufenen Volumen mal Partikelzahldichte, also
ocAtN. Allerdings miissen wir beriicksichtigen, dass
sich nicht nur das stoflende Molekiil bewegt, son-
dern auch dessen Stofpartner. Daher sollten wir ge-
nauer anstelle von ¢ von der mittleren relativen Ge-
schwindigkeit der Molekiile ¢, sprechen, und fiir die
Anzahl der Stof3e schreiben: oc,ALN.

Formulierung der Partikelzahldichte.
Die Partikelzahldichte ist N = N/ V. Aus dem idea-
len Gasgesetz, pV = nRT mit n = N/N, (N, ist die
Avogadro-Konstante), ergibt sich, dass n/V = p/RT
ist. Daraus folgt N/V = nN, /V = pN,/RT. Wenn
wir noch bedenken, dass R = N k ist (mit der Boltz-
mann-Konstanten k), dann ergibt sich N = p/kT.
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Berechnung der mittleren relativen Ge-
schwindigkeit.
Es existiert eine einfache Beziehung zwischen der
mittleren Geschwindigkeit und der mittleren relati-
ven Geschwindigkeit: um sie zu finden, miissen wir
die Molmasse eines Molekiils in GI. (1.20b) durch die
reduzierte (molare) Masse ersetzen. Wie wir an an-
derer Stelle noch sehen werden, wird die reduzierte
Molare Masse ¢ in Gleichungen verwendet, in denen
die relative Bewegung von Partikeln betrachtet wird.
Fir Partikel der Massen m, bzw. my gilt

MMy
h=—"-"—":.

1IN + ng
Fiir zwei Molekiile mit identischen Massen m gilt da-
her fiir die reduzierte Masse y = %m, und die re-

duzierte molare Masse ist %M Mit GL. (1.20b) folgt,
dass

172 12
= 8RT :21/2<8RT> —91/27
re HX%M M

und daher ergibt sich die mittlere Anzahl der Stofle
im Zeitintervall At zu 21/20CAtN.

ol

Kombination der Terme fiir Zdhler und Nen-
ner.
Fiir die mittlere freie Weglange ergibt sich schliefllich

A 1 kT
2126AtN ~ 21/26N  212¢p

Dies entspricht Gl. (1.23).

Die StofSrate eines Molekiils, also die mittlere An-
zahl der Stoéfle pro Molekil und Zeiteinheit, wird als
Stof8zahl z bezeichnet. Der Kehrwert der Stofizahl
1/z entspricht der Zeit, die ein Molekiil im Durch-
schnitt zwischen zwei Stoflen im freien Flug zuriick-
legt. Wenn ein Molekiil beispielsweise im Mittel zehn-
mal pro Sekunde mit anderen Molekiilen zusammen-
sto3t, dann hat die Stofzahl den Wert 10s~! und die
mittlere Zeit zwischen zwei Stoflen betragt % s. Bei
1atm und Raumtemperatur stofit ein Molekil etwa
eine Milliarde Mal pro Sekunde mit anderen Mole-
kiilen zusammen (z = 10° s71), daher betrigt die Zeit
zwischen zwei St6fen unter diesen Bedingungen im
Durchschnitt etwa 1 ns.

Wenn wir die mittlere freie Wegldnge A, also die im
Mittel wéihrend eines freien Flugs zuriickgelegte Stre-
cke, durch die Zeit 1/z zwischen zwei Stoflen dividie-
ren, sollten wir eine mittlere Geschwindigkeit der Mo-
lekiile erhalten. Es folgt, dass die mittlere freie Weglan-

ge und die Stofzahl wie folgt zusammenhéngen:

A

A

mittlere freie Weglange
i Per— g “g - A =1z (1.24)
Zeit zwischen zwei Stoflen  1/z

1/z

Crel

Mit der Definition fiir A aus Gl. (1.23) und ¢, = 21/%¢
(siehe Herleitung 1.2) ergibt sich

_ Crel _ 21/%¢ _ 20102
T T awr T kT
5 or

und daher, durch Kombination mit Gl. (1.20b), fiir die
Stof3zahl (ideales Gas):
. 2P (8RT>1/2
B nM '

o (1.25)

lllustration 1.7: Die mittlere freie Weglange

Mit den Angaben aus Tab. 1.3 und GLI. (1.23) konnen
wir die mittlere freie Wegliange von O,-Molekiilen
bei Standardtemperatur und Standarddruck (SATP,
25°C, 1 bar) berechnen:

k T
- % ~N K-J\
3 1,381 x 1078 K™ x 298K
21/2 % 0,40 x 107 m? x 1,00 x 10° Pa

- »
1,381 x 10723 x 298 ]

"~ 21/2 % 0,40 x 1018 x 1,00 x 105 Pam?
=7,3%x10m=73nm.

Wir haben hier die Beziehungen 1] = 1 Pam?® und
1nm = 10~ m verwendet. Unter diesen Bedingun-
gen betragt die Stof3zahl 8,6 X 10% s71. Das bedeutet,
jedes Molekiil stof3t 8,6 Milliarden Mal pro Sekunde
mit einem anderen zusammen.

Selbsttest 1.9
Wie grofd ist die Stofizahl fiir Cl,-Molekiile in einer
Chlorgas-Probe unter denselben Bedingungen?

[Antwort: 10 ns™}]

Auch an dieser Stelle wollen wir einige wichtige
Zusammenhinge aus den Ausdriicken fiir 1 und z
(GIn. (1.23) bis (1.25)) ableiten:

e Aus der Proportionalitit A « 1/p ergibt sich: Die
mittlere freie Wegldnge nimmt ab, wenn der Druck
zunimmt.



Tab. 1.3 StoBquerschnitte einiger Atome und Molekiile.

Spezies o/nm?
Argon, Ar 0,36
Ethen, C,H, 0,64
Benzol, C¢Hg 0,88
Methan, CH, 0,46
Chlor, Cl, 0,93
Kohlendioxid, CO, 0,52
Wasserstoff, H, 0,27
Helium, He 0,21
Stickstoff, N, 0,43
Sauerstoft, O, 0,40
Schwefeldioxid, SO, 0,58

1nm? = 107 m?.

Eine Zunahme des Drucks bedeutet, dass bei kon-
stanter Temperatur in einem bestimmten Volumen
mehr Molekiile vorhanden sind. Dadurch reduziert
sich die mittlere freie Wegldnge, denn das einzel-
ne Molekiil trifft haufiger auf andere Molekiile und
legt zwischen zwei Stof3en eine kiirzere Strecke zu-
riick. So sinkt beispielsweise die mittlere freie Weg-
lange von O,-Molekiilen von 73 auf 36 nm, wenn der
Druck bei 25 °C von 1,0 auf 2,0 bar verdoppelt wird.
Aus der Proportionalitdt A o« 1/0 ergibt sich: Die
mittlere freie Wegldnge nimmt mit zunehmendem
StofSquerschnitt der Molekiile ab.
Wenn die Molekiile einen groferen Stofiquerschnitt
besitzen, nimmt die Wahrscheinlichkeit fiir Kolli-
sionen mit anderen Molekiilen zu, folglich verrin-
gert sich auch die mittlere freie Wegldnge. Der Stof3-
querschnitt o von Benzolmolekiilen (0,88 nm?) ist
etwa viermal so grofy wie der von Heliumatomen
(0,21 nm?), bei gleichem Druck und gleicher Tem-
peratur ist deshalb die mittlere freie Wegldnge von
Benzolmolekiilen viermal kiirzer (siehe Tab. 1.3).
Aus der Proportionalitét z « p ergibt sich: Die Stofs-
zahl steigt, wenn der Druck zunimmt.
Bei gleicher Temperatur benétigt ein Molekiil in ei-
nem dichteren, komprimierten Gas weniger Zeit, bis
es auf ein benachbartes Molekiil trifft. Dadurch er-
hoht sich bei zunehmendem Druck die Stofizahl.
So fithrt die Verdopplung des Drucks von Sauer-
stoffgas auch zu einer Verdopplung der Stof3zahl der
0,-Molekiile, z.B. von 8,6 x 10°s~! unter SATP-
Bedingungen (siehe Illustration 1.7) auf 17 x 10 s 71
bei Erh6hung des Drucks auf 2,0 bar (und konstan-
ter Temperatur).
o Ausden Proportionalititen z o cund ¢ o 1/M'/2 er-
gibt sich: Schwere Molekiile stofien pro Zeiteinheit

1.3 Reale Gase

seltener mit anderen zusammen als leichte Molekii-
le, sofern ihr Stoflquerschnitt identisch ist.
Schwere Molekiile bewegen sich bei gleicher Tem-
peratur im Mittel langsamer als leichte Molekiile.
Dabher ist auch ihre Stofizahl geringer, d. h. sie kol-
lidieren seltener mit anderen Molekiilen.

Schliisselkonzepte

1.

1

Die kinetische Gastheorie beriicksichtigt aus-
schliefilich die kinetische Energie der Gasmolekii-
le.

Wichtige Ergebnisse dieses Modells sind die abge-
leiteten Beziehungen fiir den Druck und die qua-
dratisch gemittelte Geschwindigkeit.

Sowohl die quadratisch gemittelte Geschwindig-
keit als auch die mittlere Geschwindigkeit von
Molekiilen sind proportional zur Quadratwurzel
der Temperatur, und umgekehrt proportional zur
Quadratwurzel der Molmasse.

Die Maxwell’sche Geschwindigkeitsverteilung
gibt fiir jede beliebige Temperatur den Anteil der
Molekiile eines Gases an, die Geschwindigkeiten
innerhalb eines bestimmten Bereiches besitzen.

. Das Graham’sche Effusionsgesetz besagt, dass

bei vorgegebenem Druck und Temperatur die Effu-
sionsrate eines Gases umgekehrt proportional zur
Quadratwurzel der molaren Masse der Gasmole-
kiile ist.

Die Stofzahl ist definiert als die Anzahl der Kol-
lisionen eines Molekiils innerhalb eines Zeitinter-
valls geteilt durch die Dauer dieses Intervalls.

Die mittlere freie Weglinge ist die durchschnitt-
liche Wegstrecke, die ein Molekiil zwischen zwei
Stoflen zuriicklegt.

.3 Reale Gase

Motivation

Reale Gase weichen in ihrem Verhalten von der Mo-
dellvorstellung des idealen Gases ab, und es ist wich-
tig diese real existierenden Eigenschaften beschrei-
ben zu kénnen. Diese Abweichungen vom idealen
Verhalten erlauben es, einen tiefer greifenden Ein-
blick in die Natur der Wechselwirkungen zwischen
Molekilen zu gewinnen. Die Beriicksichtigung und
Beschreibung dieser Wechselwirkungen ist dariiber
hinaus ein exzellentes Beispiel fiir die Verfeinerung
von theoretischen Modellvorstellungen in der Physi-
kalischen Chemie.
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Schliisselideen

Anziehungs- und AbstoBungskréfte zwischen Gas-
molekilen sind die Ursache fiir das nicht-ideale Ver-
halten der Isothermen und das kritische Verhalten
realer Gase.

Voraussetzungen

Dieser Abschnitt baut auf unserer Diskussion der
idealen Gase in Abschn. 1.1 auf, und wir werden da-
raus weitergehende Uberlegungen ableiten. Hierzu
bendtigen wir ein neues mathematisches Werkzeug,
die Differenzialrechnung, die es uns ermoglicht,
Wendepunkte im Verlauf von Kurven zu identifizie-
ren. Dieses wichtige mathematische Verfahren wird
in ,Toolkit 5: Differenzialrechnung” vorgestellt.

Bei unseren Uberlegungen in Abschn. 1.2 zur kine-
tischen Gastheorie haben wir vorausgesetzt, dass in
einem idealen Gas die mittlere freie Weglidnge A der
Gasmolekiile wesentlich grofier als ihr Durchmesser d
ist; d betrachten wir dabei als denjenigen Abstand, bei
dem sich die Molekiile miteinander in Kontakt befin-
den sollen:

Bedingung fiir das ideale Verhalten eines Gases: A > d.

Aufgrund des grofien mittleren Abstands der Molekii-
le tragt in einem idealen Gas nur die kinetische En-
ergie der molekularen Bewegung zur Gesamtenergie
bei, wihrend die potenzielle Energie aus intermoleku-
laren Wechselwirkungen keinen Beitrag liefert. In der
Realitdt treten solche Wechselwirkungen bei hinrei-
chend kleinem Abstand der Molekiile auf, daher ist die
Vernachlédssigung der potenziellen Energie nur eine
Niherung, und wir miissen unser Modell erweitern.
In der Physikalischen Chemie bauen komplexe The-
orien hiufig auf einfacheren Modellvorstellungen auf,
die sukzessive verfeinert werden, um sie mit den be-
obachteten Ergebnissen weitergehender Experimente
in Einklang zu bringen.

1.3.1 Intermolekulare Wechselwirkungen

Wir konnen zwei verschiedene Formen der Wechsel-
wirkung zwischen Molekiilen unterscheiden, anzie-
hende und abstoflende. Molekiile mit vergleichsweise
groflem Abstand (einige Molekildurchmesser) ziehen
einander an. Dies ist die Ursache dafiir, dass Gase bei
niedrigen Temperaturen zu Fliissigkeiten kondensie-
ren. Unterschreitet die Temperatur eines Gases einen
bestimmten Wert, dann reicht die kinetische Energie
der Molekiile nicht mehr aus, um den Anziehungs-
kraften der Nachbarn entgegenzuwirken, und die Mo-

lekiile halten sich gegenseitig fest. Wenn zwei Molekii-
le hingegen miteinander in engen Kontakt kommen,
stofSen sie einander ab. Die abstoflende Wechselwir-
kung ist der Grund dafiir, dass Fliissigkeiten und Fest-
korper ein definiertes Volumen besitzen und nicht in
einen winzigen Punkt zusammenfallen.

Intermolekulare Wechselwirkungen — die Anzie-
hung und AbstofSung von Molekiilen — tragen zur po-
tenziellen Energie und damit auch zur Gesamtener-
gie eines Gases bei. Wenn sich Molekiile einander né-
hern, kommt es zu einer anziehenden Wechselwir-
kung und, damit verbunden, zu einer Absenkung der
Gesamtenergie: Anziehende Wechselwirkungen leis-
ten einen negativen Beitrag zur Gesamtenergie. Bei
hinreichend kleinem Abstand der Molekiile setzen
abstoflende Wechselwirkungen ein, die zu einer Er-
héhung der Gesamtenergie fithren und somit einen
positiven Beitrag leisten. Abbildung 1.10 zeigt den
allgemeinen Verlauf der intermolekularen potenziel-
len Energie in Abhéngigkeit vom Abstand. Anziehen-
de Wechselwirkungen (negativer Beitrag zur Gesamt-
energie) sind im Bereich groflerer Abstéinde dominant,
abstoflende Wechselwirkungen (positiver Beitrag zur
Gesamtenergie) im Bereich kleiner Abstéinde.

Die Wechselwirkungen der Molekiile untereinan-
der haben auch einen Einfluss auf die makroskopi-
schen Eigenschaften und damit die Zustandsgleichun-
gen der Gase. So entspricht beispielsweise der Verlauf
von Isothermen realer Gase nicht der Vorhersage des
Boyle’schen Gesetzes. Dies trifft insbesondere fiir ho-
he Driicke und tiefe Temperaturen zu, denn bei die-
sen Bedingungen spielen die Wechselwirkungen eine
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Abb. 1.10 Abhédngigkeit der potenziellen Energie vom Ab-
stand zweier Molekiile. Eine groBe positive potenzielle Energie
bei sehr kleinen Abstanden ist ein Anzeichen fiir stark absto-
Bende Wechselwirkungen. Bei etwas gro3eren Abstanden
(einige Molekiildurchmesser) dominieren anziehende Wech-
selwirkungen und die potenzielle Energie ist negativ. Sind die
Molekule weit voneinander entfernt, so wechselwirken sie
nicht mehr miteinander, und die potenzielle Energie ist null.



besonders grofie Rolle. Abbildung 1.11 zeigt einige ex-
perimentell bestimmte Isothermen von Kohlendioxid.
Obwohl die gemessenen Isothermen denjenigen des
idealen Gases (Abb. 1.1) bei hohen Temperaturen (und
niedrigen Driicken, auflerhalb des in Abb. 1.11 gezeig-
ten Ausschnitts) durchaus dhneln, sind doch erhebli-
che Unterschiede fiir Temperaturen unter 50 °C und
Driicke oberhalb von 1 bar vorhanden.

Toolkit 5: Differenzialrechnung

Die erste Ableitung einer Funktion y(x) wird symboli-
siert mit dy/dx. Sie gibt die Steigung der Funktion an
jedem Punkt der Kurve an (Abb. T1). Ein positiver Wert
fur die erste Ableitung bedeutet einen Anstieg der Kur-
ve von links nach rechts (bei gréBer werdendem x); ein
negativer Wert fiir die erste Ableitung bedeutet einen
Abfall der Kurve; wenn die erste Ableitung null ist, be-
sitzt die Kurve an der untersuchten Stelle ein Maximum
oder ein Minimum (und verlauft parallel zur x-Achse).

dy/dx=0

Abb. T1

Eine wichtige Beziehung zur Bildung der ersten Ablei-
tung einer Funktion ist:

dx" — nx"!

dx

Wenn die betrachtete Funktion die allgemeine Form y =
mx? + b besitzt, folgt daraus fiir die erste Ableitung - da
sowohl m als auch b Konstanten sind: dy/dx = 2mx. In
diesem Fall vergroBert sich also die Steigung mit stei-
gendem x immer weiter. Die oben angegebene Bezie-
hung fir dx” /dx gilt auch, wenn n negativ ist, wie in
folgendem Beispiel (die erste Ableitung fir die Funkti-
on 1/x nach x):

n=-1

A " n—1

d1_d(d/0 _dh
dxx  dx  dx

1.3 Reale Gase

1.3.2 Die kritische Temperatur

Um den genauen Verlauf der Isothermen in Abb. 1.11
zu verstehen, befassen wir uns mit der Isotherme bei
20 °C und folgen ihrem Verlauf von Punkt A bis F:

¢ Am Punkt A ist das Kohlendioxid gasférmig, und die
Kurve verlauft wie die Isotherme eines idealen Ga-
ses.

Die ersten Ableitungen fiir zwei wichtige Funktionen
lauten:

ieax — ge™ ief(x) _ df(x) of 0
dx dx dx

Zwei weitere, fundamentale Ergebnisse sind:

d 1 _ b d_ 1 _ 2
dx a + bx (a+ bx)2 dx(a+ bx)?2 (a + bx)3

Die Ergebnisse fiir komplexere Funktionen werden in
JJoolkit 11: Ableitungsregeln” in Abschn. 4.1 bespro-
chen.

Die zweite Ableitung einer Funktion erhalten wir, wenn
das Ergebnis der ersten Ableitung erneut abgeleitet
wird, geschrieben d?y /dx?. Beispiel: die erste Ableitung
der Funktion y = mx% + b lautet 2mx, die zweite Ab-
leitung derselben Funktion ist 2m. Fiir die Ubungen in
diesem Buch sollten Sie wissen, dass

2 1 _df b _2p?
dx2a+bx dx (a + bx)? (a + bx)3

ist. Ein positiver Wert fiir die zweite Ableitung bedeu-
tet, dass die Funktion an der untersuchten Stelle ein Mi-
nimum besitzt (Kurvenverlauf U-férmig); ein negativer
Wert bedeutet hingegen, dass die Funktion dort ein Ma-
ximum besitzt (Kurvenverlauf N-férmig). Wenn die zwei-
te Ableitung null ist, liegt ein Wendepunkt vor, an dem
die ,Biegung” der Kurve ihre Richtung andert (Abb. T2).

d?y/dx*< 0

d%y/d=0

d?y/dx*> 0

Abb. T2
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Abb.1.11 Experimentell bei unterschiedlichen Tempera-

turen bestimmte Isothermen von Kohlendioxid. Die kriti-
sche Isotherme ist die Isotherme bei der kritischen Temperatur

T, = 31,04°C.

Komprimieren wir das Gas in einem Gefaf mit be-
weglichem Kolben so lange, bis wir auf der Isother-
me den Punkt B erreichen, so steigt der Druck in gu-
ter Naherung gemafl dem Boyle’schen Gesetz.

Wir konnen die Kompression fortsetzen, bis das Gas
schliefllich den Zustand C erreicht.

Ab jetzt konnen wir den Kolben in das Gefaf$ hin-
eindriicken, ohne dass sich der Druck dndert (in
Abb. 1.11 wird dieser Vorgang durch eine horizonta-
le Linie zwischen den Punkten C und E dargestellt).
Um das Volumen der Substanz von Punkt E nach
Punkt F weiter zu reduzieren, muss der Druck ganz
erheblich erhoht werden.

Dieses Verhalten entspricht genau den Erwartungen

bei Kondensation eines Gases von Punkt C bis hin zu
einer Flissigkeit am Punkt E. Wenn die Gefafiwédnde
durchsichtig waren, dann kénnten wir den gesamten
Kondensationsprozess beobachten:

e Am Punkt C beginnt das Gas damit sich zu verfliis-
sigen.

e Die Kondensation ist abgeschlossen, wenn Punkt E
erreicht wird, und der Kolben befindet sich auf der
Fliissigkeitsoberflache.

e Fir die weitere Kompression der (jetzt fliissigen)
Substanz vom Punkt E weiter zu Punkt F sind erheb-
lich grofiere Druckdnderungen erforderlich. Dies
zeigt, welche Krifte iiberwunden werden miissen,
um eine Fliissigkeit auch nur um einen geringen Be-
trag zu komprimieren.

Betrachten wir nun die intermolekularen Wechselwir-
kungen, die eine Erkldrung fiir das beobachtete Ver-
halten liefern:

e Die Abnahme des Volumens zwischen C und E hat
eine Verkleinerung der intermolekularen Abstén-
de zur Folge, was zu einer deutlichen Verstiarkung
der anziehenden Wechselwirkungen und somit zum
Ubergang in den fliissigen Aggregatzustand fiihrt.

o Im Ubergang von E nach F wird versucht, Molekii-
le, die bereits in engem Kontakt zueinander stehen,
noch weiter zu komprimieren und die immer stiarker
werdenden Abstoflungskréfte zwischen den Mole-
kiilen zu tiberwinden.

Im Verlauf der Kondensation (beispielsweise im Zu-
stand D) liegt die Substanz sowohl als Gas als auch
als Fluissigkeit vor. Beide Aggregatzustiande sind durch
eine deutlich sichtbare Oberfliche voneinander ge-
trennt (Abb. 1.12). Auch bei geringfiigig hoheren Tem-
peraturen (zum Beispiel bei 30°C) ist es moglich,
durch eine Erhéhung des Drucks eine Anderung des
Aggregatzustands herbeizufiihren. Die Umwandlung
tritt jedoch erst bei grofieren Driicken auf. Zudem
ist es schwieriger, die Trennfliche genau zu erken-
nen, denn die Dichte des Gases ist wegen des hohen
Drucks fast genauso grof$ wie die Dichte der Fliis-
sigkeit. Bei einer Temperatur von 31,04 °C (304,19 K)
scheint sich das Kohlendioxid-Gas kontinuierlich in
den kondensierten Zustand umzuwandeln, und es ist
keine Trennfliche zwischen den beiden Aggregatzu-
standen zu erkennen. Diese Temperatur wird als kri-
tische Temperatur 7} bezeichnet. Sobald die Tem-
peratur einer Substanz mindestens so grof$ ist wie ih-
re kritische Temperatur, liegt unabhéngig vom Druck
immer eine einzige Materieform vor, es gibt also keine
Trennung mehr zwischen Fliissigkeit und Gas. Ein Gas
kann nur dann durch Druckerhohung zu einer Fliissig-

'/ R \ f/ \ (( \

&5 T~T, s T,

7 O 7 /
steigende Temperatur —>

Abb. 1.12 Wird eine Fliissigkeit in einem abgedichteten Be-
halter erhitzt, nimmt die Dichte der flissigen Phase ab, die
Dichte der Gasphase nimmt zu (linker und mittlerer Behalter;
die Dichtednderung der jeweiligen Phase ist durch unter-
schiedliche Schattierungen angedeutet). Wenn die kritische
Temperatur erreicht ist, sind die Dichten beider Phasen gleich,
und die Grenzflache verschwindet (rechter Behdlter). Ein sol-
cher Behélter muss hohen Driicken und Temperaturen stand-
halten kdnnen: Der Dampfdruck von Wasser betragt bei der
kritischen Temperatur von 373 °C bereits 218 atm.



Tab. 1.4 Kritische Temperaturen einiger Gase.

Kritische Temperatur T, /°C

Edelgase

Helium, He -268 (5,2 K)
Neon, Ne -229
Argon, Ar -123
Krypton, Kr —64
Xenon, Xe 17
Halogene

Chlor, Cl, 144
Brom, Br, 311
Kleine anorganische Molekiile
Ammoniak, NH; 132
Kohlendioxid, CO, 31
Wasserstoff, H, —240
Stickstoff, N, -147
Sauerstoft, O, -118
Wasser, H,O 374
Organische Verbindungen

Benzol, C¢Hg 289
Methan, CH, -83
Tetrachlormethan, CCl, 283

keit kondensiert werden, wenn die Temperatur des Ga-
ses unterhalb der kritischen Temperatur liegt.

Wenn wir uns in Abb. 1.11 auf die kritische Iso-
therme — also diejenige Isotherme bei der kritischen
Temperatur T} — konzentrieren, erkennen wir, dass
die Volumina der Substanz in den Zustanden C und E
identisch sind und in einem einzelnen Punkt, dem
sogenannten kritischen Punkt, zusammen treffen.
Den zugehorigen Druck nennt man den kritischen
Druck p,, und das zugehorige Volumen das kritische
molare Volumen V| der Substanz. Zusammen mit
der kritischen Temperatur T (siehe Tab. 1.4) nennt
man diese drei Grof3en auch die kritischen Konstan-
ten einer Substanz. Aus Tab. 1.4 konnen wir z. B. ent-
nehmen, dass Stickstoffgas oberhalb einer Temperatur
von 126 K (-147 °C) nicht verflussigt werden kann. Die
kritische Temperatur wird gelegentlich verwendet, um
zwischen den Begriffen ,Dampf” und ,Gas” zu unter-
scheiden:

e Wir bezeichnen die Gasphase einer Substanz als
Dampf, wenn ihre Temperatur unterhalb der kri-
tischen Temperatur liegt. Dampf kann durch Kom-
pression alleine verfliissigt werden.

e Wir bezeichnen die Gasphase einer Substanz als
Gas, wenn ihre Temperatur oberhalb der kritischen
Temperatur liegt. Gas kann durch Kompression al-
leine nicht verfliissigt werden.

1.3 Reale Gase

Daher ist Sauerstoff bei Raumtemperatur ein echtes
Gas, wihrend es sich bei der Gasphase von Wasser bei
Raumtemperatur um einen Dampf handelt.

Wenn wir ein Gas bei einer Temperatur oberhalb der
kritischen Temperatur komprimieren, erhalten wir ein
dichtes fluides Medium, das sich in vieler Hinsicht wie
eine Flussigkeit verhélt — seine Dichte beispielswei-
se ist vergleichbar mit der einer Fliissigkeit, und es
kann als Losungsmittel wirken. Trotzdem kann man
das Fluid nicht als Fliissigkeit ansehen, denn es fiillt ei-
nen Behdlter stets vollstidndig aus (wie ein Gas), und es
ist nicht durch eine deutlich sichtbare Oberfldche von
der Gasphase getrennt. Es handelt sich aber aufgrund
der hohen Dichte auch nicht um ein Gas. Ein sol-
ches Medium nennt man iiberkritisches Fluid. Eini-
ge Stoffe im tiberkritischen Zustand werden in techni-
schen Prozessen als Losungsmittel eingesetzt. So dient
tiberkritisches Kohlendioxid (scCO,) zur Extraktion
des Cofteins aus Kaffee. Ein Vorteil dieses Verfahrens
ist, dass es keine unerwiinschten, moglicherweise gif-
tigen Riickstdande gibt. Gegenwirtig sind tiberkritische
Fluide auch deshalb von grofiem Interesse, weil sie
bei gewissen technischen Verfahren anstelle von Flu-
orchlorkohlenwasserstoffen (FCKW) eingesetzt wer-
den koénnen, denn FCKW sind fiir ihren schéadigen-
den Einfluss auf die Umwelt bekannt. Da (iiberkriti-
sches) Kohlendioxid entweder direkt aus der Atmo-
sphire oder (durch Fermentation) aus erneuerbaren
organischen Quellen gewonnen werden kann, wird die
Nettobelastung der Atmosphédre durch Kohlendioxid
nicht weiter erhoht.

1.3.3 Der Kompressionsfaktor

Eine niitzliche GrofSe zur Charakterisierung realer Ga-
se ist der Kompressionsfaktor Z. Er ist definiert als
das Verhiltnis der Molvolumina eines realen und ei-
nes idealen Gases bei gleicher Temperatur und glei-
chem Druck:

Vin

Z=—0_ (1.26a)
Vr;ldeal

In einem idealen Gas ist V,, = Vrindeal, also gilt stets
Z = 1. Daher ist die Abweichung des Kompressions-
faktors Z von 1 ein Maf$ fiir die Abweichung des Ver-
haltens eines Gases von der Idealitét.

Das Molvolumen eines idealen Gases ist nach
GL (1.9b) in Abschn. 1.1 gegeben mit V¢l = RT/p,
daher ldsst sich die Definition von Z umschreiben zu

Vm Vm _ pvm

- - = . 1.26b
videal ~ RT/p ~ RT (1.26b)

Abbildung 1.13 zeigt, wie sich der Kompressionsfak-
tor verschiedener realer Gase in Abhdngigkeit vom
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Abb. 1.13 Druckabhdngigkeit des Kompressionsfaktors Z fiir
verschiedene Gase bei 0 °C. Fiir das ideale Gas gilt unabhangig
vom Druck stets Z = 1. Bei dieser Temperatur zeigt von den
hier aufgefiihrten Gasen nur Wasserstoff im gesamten Druck-
bereich ein positives Abweichen vom idealen Verhalten. Alle
anderen Gase weichen bei hohen Driicken ebenfalls positiv,
bei niedrigen Driicken hingegen negativ vom idealen Verhal-
ten ab. Negative Abweichungen vom Verhalten des idealen
Gases sind eine Folge der Dominanz anziehender Wechselwir-
kungen, bei positiven Abweichungen dominieren abstof3ende
Wechselwirkungen. Der Verlauf der Kurve Z(p) hangt von der
Temperatur ab.

Druck éndert. Bei niedrigen Driicken ist der Kom-
pressionsfaktor einiger Gase (zum Beispiel Methan,
Ethan und Ammoniak) kleiner als 1; das bedeutet,
die Molvolumina dieser Gase sind bei gleicher Tem-
peratur und gleichem Druck kleiner als das Molvo-
lumen des idealen Gases. Fiir diese Gase dominieren
bei moderaten Driicken anziehende Wechselwirkun-
gen, die eine Verringerung der intermolekularen Ab-
stinde und damit auch des Gesamtvolumens verursa-
chen. Der Kompressionsfaktor aller Gase ist bei hohen
Driicken stets grofier als 1, fiir manche Gase (Wasser-
stoff in Abb. 1.13) sogar im gesamten Druckbereich.
Der Verlauf der Kurve Z(p) hiangt von der Tempera-
tur ab. Bei Z > 1 ist das Molvolumen des realen Gases
bei gleicher Temperatur und gleichem Druck grofSer
als das Molvolumen des idealen Gases. Bei hohen Drii-
cken sind die intermolekularen Abstinde klein, daher
dominieren abstoflende Wechselwirkungen, die eine
weitere Kompression des Gases erschweren. Bei Was-
serstoffmolekiilen sind die anziehenden Wechselwir-
kungen so schwach, dass bereits bei geringen Driicken
die abstoflenden Wechselwirkungen dominieren.

lllustration 1.8: Der Kompressionsfaktor

Ein Gas nehme bei T = 250K und p = 15atm ein
molares Volumen V, ein, das um 12 % geringer ist als
man es bei idealem Verhalten erwarten wiirde. Also
ist

Vm _ Vr;deal ~ _£
Vrildeal 100 °

Daraus folgt

Vv
I _1=-0,12,
Vr;ldeal v
m

= ideal =
Vm

also

1-0,12=0,88.

Da Z = 0,88 < 1 ist, konnen wir schliefSen, dass an-
ziehende Wechselwirkungen in der Gasprobe domi-
nieren.

Selbsttest 1.10

Ein Gas nehme bei 7' = 350 Kund p = 12 atm ein mo-
lares Volumen V, ein, das um 12 % grofSer ist als man
es bei idealem Verhalten erwarten wiirde. Berechnen
Sie den Kompressionsfaktor unter diesen Bedingun-
gen, sowie das Molvolumen des Gases. Dominieren in
der Gasprobe anziehende oder abstoflende Wechsel-
wirkungen?

[Antwort: Z = 1,12; V., = 2,7 dm? mol™};
Abstoflung ist dominant]

1.3.4 Die Virialgleichung

Wir kénnen die Abweichung des Kompressionsfak-
tors Z vom ,idealen“ Wert 1 dazu verwenden, eine emi-
pirische, also eine auf experimentellen Befunden ba-
sierende, Zustandsgleichung aufzustellen. Wir wollen
annehmen, dass sich Z fiir reale Gase als eine Summe
sehr vieler Terme, beginnend mit dem Summanden 1,
darstellen lasst:

B C

Z=1+4—+—S+..
Vo V2

(1.27a)
Die Koeffizienten B, C, ... werden als Virialkoeffizi-
enten bezeichnet: B ist der zweite Virialkoeftizient, C
der dritte usw. Der erste Virialkoeffizient (A) ist gleich
1. Das Wort ,virial“ ist vom lateinischen Wort ,vis*
(Kraft) abgeleitet, und soll die Bedeutung der intermo-
lekularen Krifte fiir das Verhalten der Gase zum Aus-
druck bringen. Die Virialkoeffizienten B, C usw. wer-
den gelegentlich auch mit den Symbolen B,, B3 usw.
bezeichnet. Die Koeffizienten sind von Gas zu Gas ver-
schieden und hiangen von der Temperatur ab. Es ist in
der Physikalischen Chemie weit verbreitet, ein unter
gewissen Einschriankungen giiltiges Gesetz (hier Z =1
fir Gase bei sehr grofien Molvolumina) als Ndherung
eines komplizierteren und universelleren Zusammen-
hangs anzusehen. In vielen Féllen kann der Giiltig-
keitsbereich des einfachen Gesetzes durch zusétzliche
Terme schrittweise erweitert werden.



Der wichtigste zusitzliche Term auf der rechten Sei-
te von Gl. (1.27a) ist der zweite Term, der propor-
tional zu 1/V,, ist, denn unter den meisten Bedin-
gungen (bei geringem Druck) kann der Term C/V?2
wegen C/V2 < B/V,, vernachlissigt werden. Dann
bestimmt im Wesentlichen der zweite Virialkoeffizi-
ent die Abhingigkeit des Kompressionsfaktors vom
Druck bzw. Molvolumen. Es gilt

B
Z=1+—
v,

m

(1.27b)

Aus den Verldufen der Kurven in Abb. 1.13 kénnen
wir auf die Vorzeichen der Virialkoeffizienten B und C
schliefen. Wir konnen folgern, dass B fiir Wasserstoff
wegen Z > 1 positiv, fiir Methan, Ethan und Ammo-
niak hingegen wegen Z < 1 negativ ist. Das gilt natiir-
lich nur fiir diejenige Temperatur, die den dargestell-
ten Kurven zu Grunde liegt. Mit zunehmendem Druck
und damit abnehmendem V? steigt der Einfluss des
dritten Summanden C/ Vr%l. Fiir positive Werte von C
ist daher der Kompressionsfaktor bei hohen Driicken
fiir alle Gase grofler als 1 (Abb. 1.13). Um die Viri-
alkoeffizienten eines Gases zu bestimmen, muss zu-
ndchst der Kompressionsfaktor in Abhéngigkeit vom
Druck oder Molvolumen gemessen werden. Anschlie-
flend kann ein Satz von Virialkoeffizienten durch ma-
thematische Anpassungsverfahren so bestimmt wer-
den, dass der Verlauf von Z iiber den gesamten Druck-
bzw. Volumenbereich méglichst gut wiedergegeben
wird.

Die Virialkoeffizienten hingen von der Tempera-
tur ab. Bei der sogenannten Boyle-Temperatur Ty
wird B = 0, dann vereinfacht sich GI. (1.27b) zu Z =
1 und das Gas zeigt iiber einen engen Bereich von
Molvolumina ideales Verhalten. Die Boyle-Tempera-
tur von Stickstoff ist 327,2 K (54,1 °C), und fiir Koh-
lendioxid 714,8 K (441,6 °C). Bei der Boyle-Tempera-
tur sind die anziehenden und abstoflenden Wechsel-
wirkungen gleich grof und heben sich daher gegen-
seitig auf.

Wir wollen nun GIl. (1.27a) in Form einer Zu-
standsgleichung angeben. Durch Kombination mit
GL (1.26b), Z = pV,,/(RT), erhalten wir

PV B  C

RT =1+ Vm+ Vn21+...
Wenn wir beide Seiten mit R7/V,, multiplizieren und
zusitzlich V, durch V' /n ersetzen, ergibt sich folgen-
der Ausdruck fir p:

nRT nB n?C
=—(1+—=+—=+... ).
P="y < v T2 >

Gleichung (1.28) wird Virialgleichung genannt. Bei
sehr geringen Driicken sind wegen des entsprechend

(1.28)

1.3 Reale Gase

grofien Molvolumens die Terme #nB/V und n*>C/V?
sehr klein und konnen, wie auch alle noch folgen-
den Summanden, vernachlissigt werden. Daher geht
die Virialgleichung im Grenzfall sehr kleiner Driicke
(p — 0) in die Zustandsgleichung des idealen Gases
tiber (vgl. Gl (1.5b)).

lllustration 1.9: Die Virialgleichung

Das Molvolumen von NHj betrigt 1,00 dm3 mol ™!
bei p = 36,2 barund 7' =473 K. Wenn wir davon aus-
gehen, dass bei diesen Bedingungen die Virialglei-
chungals p = (RT/V,))(1+ B/ V,,) geschrieben wer-
den kann, gilt

PV
B=|(—-1)V,.
(1) %
Daraus ergibt sich folgender Wert fiir den zweiten
Virialkoeffizienten B:

36,2 bar 1,00 dm? mol~!

A A
Y r Y

-
36,2 X 10° Pa x 1,00 X 1073 m® mol ™!
8,3145] K-1 mol-1 x 473 K
x 1,00 X 1073 m® mol™!

=-79,5x 10"°m3 mol™! = —=79,5 cm® mol ™! .

(Beachten Sie, dass die Einheit ] im Nenner gegen
Pam?® = J im Zahler gekiirzt wurde.)

Selbsttest 1.11

Der zweite Virialkoeffizient fiir NH; betrdagt B =
—45,6cm®mol™ bei T = 573 K. Berechnen Sie bei
dieser Temperatur den Druck, bei dem das Molvolu-
men von Ammoniak 1,00 dm3 mol~! betrigt.

[Antwort: 45,5 bar]

1.3.5 Die van-der-Waals-Gleichung

Die Virialgleichung ist eine dufSerst zuverldssige Zu-
standsgleichung. Ihr Nachteil besteht darin, wenig an-
schaulich zu sein. Wir konnen nicht auf den ersten
Blick erkennen, warum Gase vom idealen Verhal-
ten abweichen oder zu Fliissigkeiten kondensieren.
Im Jahr 1873 formulierte der holldndische Physiker
Johannes van der Waals die nach ihm benannte gena-
herte Zustandsgleichung. Die van-der-Waals-Glei-
chung ist keine exakte Zustandsgleichung, zeigt je-
doch in sehr anschaulicher Weise, wie die intermo-
lekularen Wechselwirkungen zu Abweichungen vom
idealen Verhalten beitragen, und ist ein weiteres
Beispiel fiir eine mathematische, quantitativ nach-
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Abb. 1.14 Wird ein Molekdl als eine Kugel mit dem Radius r
und dem Volumen Vg i = i;nr3 behandelt, dann kénnen

sich zwei Molekile maximal bis auf den Abstand 2r anndhern.
Das bedeutet, dass eine Kugel um ein Molekiil mit dem Ra-
dius 2r und dem Volumen 8V}, flir andere Molekdile nicht
zuganglich ist (siehe auch Herleitung 1.3).

priifbare Beziehung auf der Basis eines tragfihigen
Modells.

Aufgrund der abstoflenden Wechselwirkung kén-
nen zwei Molekiile einander nicht beliebig nahe kom-
men, das heiflt, ein bestimmter intermolekularer Ab-
stand kann nicht unterschritten werden. Das einzelne
Molekiil kann sich also nicht innerhalb des gesamten
Volumens V frei bewegen. Wir miissen daher V um
einen bestimmten Wert reduzieren. Das zu subtrahie-
rende Volumen ist proportional zur Zahl der Mole-
kille und zum Volumen, das jedes einzelne Molekiil
ausschlieft, also fiir andere Molekiile unzuginglich
macht (Abb. 1.14). Wir konnen somit den Einfluss der
abstofSenden Krifte beriicksichtigen, indem wir in der
Zustandsgleichung des idealen Gases V durch V — nb
ersetzen. Die Proportionalitdtskonstante b beschreibt
den Zusammenhang zwischen der Volumenabnahme
und der Stoffmenge des Gases. Wie wir in der folgen-
den Herleitung 1.3 zeigen werden, hingt b mit dem
Volumen eines einzelnen Molekiils wie folgt zusam-
men:

b~ 4VMolekiil]\[A . (129)

Das Volumen einer Kugel mit dem Radius R ist 2R3,
Wenn wir Molekiile als starre Kugeln betrachten,
wie in Abb. 1.14 gezeigt, konnen sich zwei Molekii-
le nur bis auf einen Abstand von 2r anndhern, denn
Vitolekil = ;—Lnrg. Daher betrigt das Ausschlussvo-

4 4
lumen §H(2r)3 = 8(5117"3), bzw. 8 Vyioleki- Das Aus-
schlussvolumen bezogen auf ein einzelnes Molekiil
betragt exakt die Halfte, also 4 V}yje1i- Damit ergibt

sich das Ausschlussvolumen fiir ein Mol Gasmolekii-
le zu b =~ 4 VyqperinlNa» was Gl (1.29) entspricht.

Wir erhalten auf diesem Weg aus p = nRT/V eine
modifizierte Form der Zustandsgleichung des idealen
Gases:

nRT
V—nb’

Diese Zustandsgleichung entspricht noch nicht der
kompletten van-der-Waals-Gleichung, da der Einfluss
anziehender Wechselwirkungen nicht beriicksichtigt
ist. Wir konnen sie aber bereits zur Beschreibung des
Verhaltens von Gasen verwenden, wenn die abstofen-
den Wechselwirkungen dominant sind. Bei niedrigen
Driicken ist das Gesamtvolumen V' des Gases sehr viel
grofier als das Ausschlussvolumen der Molekiile. Die-
sen Sachverhalt geben wir in der Form V > nb an. Das
bedeutet, dass nb gegen V im Nenner des Bruchs ver-
nachldssigt werden kann, so dass sich wieder die Zu-
standsgleichung des idealen Gases ergibt.

Hinweis Es ist immer sinnvoll zu iiberpriifen, ob wir
ein bekanntes Gesetz erhalten, wenn wir eine aufge-
stellte Gleichung durch plausible physikalische Nahe-
rungen vereinfachen.

Wahrend abstofSende Wechselwirkungen einen Ein-
fluss auf das Volumen haben, in dem sich die Molekiile
frei bewegen konnen, bewirken anziehende Wechsel-
wirkungen eine Verdnderung des Drucks. Wir wollen
annehmen, dass die anziehende Kraft auf ein einzelnes
Molekiil proportional zur Konzentration n/V des Ga-
ses ist. Die Molekiile werden durch anziehende Wech-
selwirkungen abgebremst und prallen daher seltener
und mit geringerer Wucht auf die Wénde des Geféf3es.
Wir konnen also erwarten, dass sich der Druck um
einen Betrag verringert, der proportional zum Qua-
drat der molaren Konzentration ist: Beide Effekte —
die Zahl der Stofle auf die Wand nimmt ab, gleichzei-
tig werden die Stof3e schwicher — tragen jeweils einen
Faktor n/V zur Verringerung des Drucks bei. Um den
Zusammenhang in Form einer Gleichung angeben zu
konnen, fithren wir die Proportionalitdtskonstante a
ein und erhalten

2
Druckabnahme = a x (%) .

Wir fassen nun unsere Teilergebnisse zu einer Zu-
standsgleichung zusammen, die die Einfliisse von ab-
stoflenden und anziehenden Wechselwirkungen be-
riicksichtigt:

(1.30a)

nRT < n >2
a .

V—nb %

Dies ist die van-der-Waals-Gleichung. Um die Ahn-
lichkeit zur Zustandsgleichung des idealen Gases



pV = nRT deutlich zu machen, kénnen wir sie um-
formen, indem wir den zweiten Term auf der rechten
Seite durch Addition auf die linke Seite bringen, was
p + an®/V? ergibt, und dann auf beiden Seiten der
Gleichung mit V' — nb multiplizieren:

<p+%2>(\/—nb)=nRT. (1.30b)

Wir haben die van-der-Waals-Gleichung anhand phy-
sikalischer Uberlegungen aus der Zustandsgleichung
des idealen Gases abgeleitet. Hierzu haben wir das Ei-
genvolumen der Molekiile sowie den Einfluss der in-
termolekularen Krafte betrachtet. Die van-der-Waals-
Gleichung kann auch auf andere Art hergeleitet wer-
den, aber der von uns eingeschlagene Weg ist sehr
anschaulich. Er hat dartiber hinaus den Vorteil, dass
wir die van-der-Waals-Konstanten a und b einfiih-
ren konnten, ohne ihnen eine konkrete physikalische
Bedeutung zuschreiben zu miissen. In der Tat sind a
und b eher als empirische Parameter aufzufassen, das
heifst, es ist nicht moglich, diese Parameter quantita-
tiv auf molekulare Eigenschaften zuriickzufiihren. Die
van-der-Waals-Konstanten sind von Gas zu Gas ver-
schieden, jedoch im Unterschied zu den Virialkoeffi-
zienten von der Temperatur unabhéngig. In Tab. 1.5
sind die van-der-Waals-Konstanten einiger Gase an-
gegeben. Aus der Art, wie wir die van-der-Waals-Glei-
chung abgeleitet haben, folgt:

e Die van-der-Waals-Konstante a (der Parameter fir
die anziehenden Wechselwirkungen) sollte grof3
sein fiir Molekiile, die einander stark anziehen.

e Die van-der-Waals-Konstante b (der Parameter fir
die abstoflenden Wechselwirkungen) sollte grof3
sein fiir Molekiile, die eine grofie Ausdehnung be-
sitzen.

Tab. 1.5 Van-der-Waals-Konstanten einiger Gase.

Substanz a b
(102kPadm® mol~2) (102dm3 mol™")

Luft 1,4 0,039
Ammoniak, NH, 4,225 3,71
Argon, Ar 1,355 3,20
Kohlendioxid, CO, 3,658 4,29
Ethan, C,Hj 5,580 6,51
Ethen, C,H, 4,612 5,82
Helium, He 0,0346 2,38
Wasserstoff, H, 0,2452 2,65
Stickstoff, N, 1,370 3,87
Sauerstoft, O, 1,382 3,19
Xenon, Xe 4,192 5,16
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Abb.1.15 Berechnete van-der-Waals-Isothermen. Druck

und Volumen sind auf den Achsen in Einheiten des kritischen
Drucks p, (p, = a/(27b?)) bzw. des kritischen Volumens V,
(V, = 3b) angegeben. Die zu den einzelnen Isothermen geh6-
rigen Temperaturen sind in der Form T/T, (T, = 8a/(27Rb))
angegeben. Die zu T/T, = 1 gehdrige Isotherme ist die kriti-
sche Isotherme, also die Isotherme bei der kritischen Tempera-
tur.

In Abb. 1.15 sind einige Isothermen gezeigt, die mit-
hilfe der van-der-Waals-Gleichung fiir unterschied-
liche Temperaturen berechnet wurden. Durch einen
Vergleich mit experimentell bestimmten Isothermen
(Abb. 1.11) kénnen wir beurteilen, wie gut diese Néhe-
rungsgleichung das Verhalten realer Gase beschreibt.
Alles in allem werden die gemessenen Isothermen
recht gut reproduziert, abgesehen von dem wellenarti-
gen Verlauf, den die gendherten Isothermen unterhalb
der kritischen Temperatur zeigen. Man nennt diesen
Abschnitt einer Isotherme van-der-Waals-Schleife.
Das von den van-der-Waals-Schleifen vorhergesagte
Verhalten ist physikalisch unsinnig, da innerhalb be-
stimmter Bereiche eine Erhhung des Drucks zu einer
Volumenzunahme fithren miisste. Deshalb kann man
die van-der-Waals-Schleifen durch geeignete horizon-
tale Linien ersetzen (Abb. 1.16). Die van-der-Waals-
Konstanten in Tab. 1.5 wurden durch eine Anpassung
der berechneten Kurven an die Verldufe gemessener
Isothermen bestimmt.

Aus Abschn. 1.3.1 wissen wir bereits, dass der Ver-
lauf der Isothermen realer Gase umso besser der Zu-
standsgleichung des idealen Gases entspricht, je hoher
die Temperatur und je geringer der Druck ist. Wir wol-
len nun priifen, ob die van-der-Waals-Gleichung die-
sen Sachverhalt richtig wiedergibt. Wenn wir auf der
rechten Seite von Gl. (1.30a) einen hinreichend ho-
hen Wert fiir T einsetzen, ist der zweite Term sehr
viel kleiner als der erste und kann daher vernachlés-
sigt werden. Ferner ist bei gentigend kleinen Driicken
das Ausschlussvolumen nb deutlich kleiner als das
Volumen V' des Gases, so dass wir den Nenner im
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Abb. 1.16 Die physikalisch sinnlosen van-der-Waals-Schlei-
fen kdnnen durch horizontale Linien ersetzt werden, die die
Schleifen in zwei gleich grof3e Flachen einteilen. Die Isother-
men, die sich nach dieser Korrektur ergeben, dhneln sehr stark
den experimentellen Isothermen.

ersten Term durch V ersetzen konnen. Die van-der-
Waals-Gleichung geht somit fiir hohe Temperaturen
und niedrige Driicke in die Zustandsgleichung des ide-
alen Gases (p = nRT/V) uiber. Dies liegt daran, dass
bei sehr hohen Temperaturen die kinetische Energie
der Molekiile bei weitem die potenzielle Energie der
Wechselwirkungen tibersteigt. Auflerdem ist das Vo-
lumen eines Gases unter diesen Bedingungen eben-
falls sehr grof3, und die Molekiile verbringen derart viel
Zeit im stoffreien Flug, dass ihr Eigenvolumen ver-
nachldssigt werden kann.

Der Virialkoeffizient B (sieche Abschn. 1.3.4) kann
ebenfalls mit den van-der-Waals-Konstanten in Ver-
bindung gebracht werden. Zunachst schreiben wir die
ideale Gasgleichung (GL. (1.5b)) wie folgt um:

p= nRT (n)z_nRT< % na)

v “\V v \V_ub RTV

_ nRT 1 __a
VvV \1-ub/V RTV/n

_ nRT 1 __a
Vv \1-b/V,, RTV, )

Wenn wir nun annehmen, dass b/V,, < 1 ist und
wir dartiber hinaus die Néherung 1/(1 —x) ~ 1 + «x
beriicksichtigen (siehe ,Toolkit 6: Reihenentwicklung
und Naherungen®), dann erhalten wir mit x = b/V,,:

nRT <1+ b—a/RT) '
% V.

m

p:

Durch Vergleich dieses Ausdrucks mit der Virialglei-
chung (GL. (1.28)) erhalten wir

B=ph- -2

2T (1.31)

Der Virialkoeffizient B ist positiv, wenn b > a/RT
gilt (Abstofiung dominiert), und er ist negativ fiir b <
a/RT (Anziehung dominiert), wie bereits zu Beginn
angenommen. Die Boyle-Temperatur (bei der B = 0
ist) stellt sich ein, wenn b = a/RT ist (abstoflende und
anziehende Wechselwirkungen sind gleich grof3). Das
ist der Fall bei Ty = a/Rb.

1.3.6 Die Verfliissigung von Gasen

Ein Gas kondensiert zur Fliissigkeit, wenn es auf eine
Temperatur unterhalb des Siedepunkts, dessen Lage
vom Druck abhingt, abgekiihlt wird. Wenn wir bei-
spielsweise Chlorgas bei einem Druck von 1atm ver-
flissigen wollen, miissen wir es auf eine Tempera-
tur unterhalb von -34°C abkiihlen. Das kann durch
ein Kiltebad aus Trockeneis (festes Kohlendioxid) er-
reicht werden. Da die Temperatur des Kéltebads die
Siedetemperatur des Gases unterschreiten muss, ist
dieses einfache Verfahren bei Gasen mit niedrigen
Siedepunkten wie Sauerstoft (-183 °C) oder Stickstoft
(=196 °C) praktisch nicht mehr durchfiihrbar.

Ein alternatives technisches Verfahren beruht auf
der Wirkung intermolekularer Kréfte. Aus Abschn. 1.2
wissen wir bereits, dass die quadratisch gemittelte Ge-
schwindigkeit der Molekiile eines Gases proportional
zur Quadratwurzel der Temperatur ist (Gl. (1.20a),
¢ « T'/?). Eine Verringerung dieser Geschwindigkeit
hat daher eine Abnahme der Temperatur zur Folge.
Wenn wir die Molekiilgeschwindigkeiten so weit er-
niedrigen, dass sich die Teilchen aufgrund der anzie-
henden Wechselwirkungen nicht mehr voneinander
l6sen konnen, geht das Gas in den fliissigen Aggregat-
zustand tber.

Um den physikalischen Hintergrund dieses Verfah-
rens besser verstehen zu konnen, stellen wir uns zu-
nédchst einen Ball vor, der in die Luft geworfen wird:
Der Ball wird wegen der Erdanziehung mit zuneh-
mender Hohe langsamer, und seine kinetische Energie
wird in potenzielle Energie umgewandelt. Wir wissen
bereits, dass auch Molekiile einander anziehen. Die-
se Wechselwirkung beruht zwar nicht auf der Gra-
vitationswechselwirkung, aber der Effekt ist derselbe.
Wie der Ball mit zunehmender Entfernung zur Erde
langsamer wird, sollten auch die Geschwindigkeiten
der Molekiile abnehmen, wenn diese sich voneinan-
der entfernen. Wenn wir ein Gas expandieren lassen,
nimmt das Volumen zu, und daher steigt auch der
Abstand der Molekiile untereinander. Wenn wir ver-
hindern, dass bei diesem Vorgang Wérme von auflen
zugefiihrt wird, nimmt die Temperatur des Gases ab.
Wenn dem Gas ein grofieres Volumen zur Verfiigung
gestellt wird, miissen sich die einzelnen Molekiile von
den anziehenden Kréften ihrer Nachbarmolekiile 16-



sen, um das gesamte Volumen ausfiillen zu kénnen.
Das erfordert jedoch eine Umwandlung von kineti-
scher in potenzielle Energie und fithrt somit zu einer
Verlangsamung der Molekiile. Wegen der Abnahme
der mittleren Geschwindigkeit der Molekiile ist das
Gas nun kalter als vor der Expansion.

Technisch realisiert man diesen Vorgang, indem
man ein komprimiertes Gas durch ein ,Drosselven-
til, eine sehr feine Offnung, strémen lisst. Aufgrund
des Druckunterschieds expandiert das Gas und kiihlt
sich dabei ab. Dies wird als Joule-Thomson-Effekt
bezeichnet. Der Effekt wurde zuerst von James Joule
(ihm zu Ehren ist die Einheit der Energie benannt) und
William Thomson (dem spéteren Lord Kelvin) beob-
achtet und untersucht. Dieses Verfahren funktioniert
nur fiir reale Gase, bei denen anziehende intermole-
kulare Wechselwirkungen dominieren. Wenn die Mo-

Toolkit 6: Reihenentwicklung und Naherungen

Esist moglich und oft duBBerst niitzlich, eine Funktion als
Reihenentwicklung zu formulieren in der Form

fX) = o+ 1 x + X% + ...

wobei ¢y, ¢;, ¢y, ... konstante Koeffizienten sind. Die
folgenden Reihen werden in der Physikalischen Chemie
haufig bendtigt; wahrend (a) fur alle x gilt, sind die Rei-
hen in (b), (c) und (d) nur fiir x| < 1 wohldefiniert. Die
hinter dem Rundungszeichen (=) angegebenen Nahe-
rungen sind nur giiltig, wenn x < 1 ist (Abb. T1).

0,05 0,1
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lekiile im Wesentlichen einander abstofien, wird bei
einer Expansion des Gases potenzielle in kinetische
Energie umgewandelt und die Geschwindigkeiten der
Molekiile nehmen im Mittel zu. Daher fiithrt der Joule-
Thomson-Effekt fiir Gase mit einem Kompressions-
faktor Z > 1 zur Erwdrmung, wenn das Gas expan-
diert.

In der technischen Praxis zur Verfliissigung von Ga-
sen ldsst man dieses mehrere Expansions- und Kom-
pressionsschritte in einer sogenannten Linde-Kiihl-
maschine (siehe Abb. 1.17) durchlaufen. In jedem
Schritt wird das Gas immer weiter abgekiihlt, stromt
nun dem noch komprimierten Gas entgegen und kiihlt
dieses bereits vor der Expansion weiter ab. Nach meh-
reren Expansionsschritten hat sich das Gas so weit ab-
gekiihlt, dass es zur Fliissigkeit kondensiert.

(© In(1+x)=x-— %x2+ %x3 — e RX
1/2 _ LRV v Y 1
(d (1+x) —1+2x X T ~1+2x
Alle vier dieser Ausdriicke sind Spezialfélle der allge-

meinen Taylorreihe. Ahnliche Naherungen fiir weitere
Funktionen kann man tber die Vorschrift

d—zf X+
o),

gewinnen, wobei der tiefgestellte Index 0 bedeutet,
dass die Ableitungen an der Stelle x = 0 gebildet wer-
den sollen.

f(x)=f(0)+<%)ox+

1 +x)172

@) ex=1+x+%x2+%x3—---z1+x
b) T+x)"=1—-x+x>—-m~1-x
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1 1,2
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0,9 A +x)! 11
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Abb. 1.17 Die Funktionsweise einer Linde-KiihImaschine. Das
komprimierte Gas wird vor der Expansion im Gegenstromver-
fahren abgekiihlt, bevor es durch das Drosselventil stromt. Das
bereits expandierte Gas Ubernimmt die Rolle des Kiihimittels.
Auf diese Weise werden beim Expansionsschritt immer tiefere
Temperaturen erreicht, bis schlieBlich die Verflissigung des
Gases eintritt.

Schliisselkonzepte

1. Das Ausmaf} der Abweichungen eines Gases von
idealem Verhalten wird im Kompressionsfaktor
zusammengefasst.

2. Die Virialgleichung ist eine empirische Erweite-
rung des idealen Gasgesetzes, die das Verhalten
realer Gase in einem bestimmten Bereich duflerer
Bedingungen beschreibt.

3. Aus den Isothermen eines realen Gases lassen sich
die Konzepte des Dampfdrucks und des kriti-
schen Verhaltens ableiten.

4. Ein Gas kann alleine durch Erhohung des Drucks
verfliissigt werden, solange seine Temperatur un-
terhalb oder exakt bei seiner kritischen Tempera-
tur liegt.

5. Die van-der-Waals-Gleichung ist eine theoreti-
sche Zustandsgleichung fiir reale Gase, die von den
beiden van-der-Waals-Konstanten a bzw. b ab-
héngt, die anziehende bzw. abstoflende intermole-
kulare Wechselwirkungen berticksichtigen.

6. Als Joule-Thomson-Effekt bezeichnet man das
Abkiihlen eines Gases, wenn es ohne Zufuhr von
Wirme expandiert, nachdem es durch ein Drossel-
ventil gestromt ist.

Ubungsteil Fokus 1 - Gase

Ubungen

Behandeln Sie alle Gase als ideal, sofern nicht aus-
driicklich etwas anderes verlangt ist.

Abschnitt 1.1 - Das ideale Gas

1.1.1 Geben Sie die Driicke (a) 108kPa in Torr,
(b) 0,975 bar in atm, (c) 22,5kPa in atm, (d) 770 Torr
in Pascal an.

1.1.2  Welchen Druck tibt gasférmiger Stickstoff mit
einer Masse von 3,055 g bei 32 °C in einem Gefif$ mit
einem Volumen von 3,00 dm3 aus?

1.1.3 Eine Probe gasférmigen Neons mit einer Mas-
se von 425mg nimmt bei 77K ein Volumen von
6,00 dm?3 ein. Wie grof3 ist der Druck des Gases?

1.1.4 Uberraschenderweise wirkt Stickstoffmon-
oxid (NO) im menschlichen Korper als Neurotrans-
mitter. Um dieses Phidnomen zu untersuchen, wird
Stickstoffmonoxid in einem Gefif mit einem Volu-
men von 300,0cm® aufgefangen. Bei 14,5°C betrigt
der Druck des Gases 34,5 kPa. Wie grof3 ist die Stoft-
menge an NO-Molekiilen?

1.1.5 In Haushaltsgeriten zur Erzeugung von Spru-
delwasser werden Stahlzylinder eingesetzt, die mit
Kohlendioxid gefiillt sind. Diese Zylinder haben ein
Volumen von 250 cm3. Ein voller Zylinder hat eine
Masse von 1,04 kg, und — wenn er leer ist — eine Masse
von 0,74 kg. Wie grof3 ist der Druck des Kohlendioxid-
gases bei 20 °C?

1.1.6 Man untersucht die Wirkung hoher Driicke
auf (auch menschliche) Organismen, um beispielswei-
se mogliche Gefahren des Tiefseetauchens besser ab-
schitzen zu konnen. Welcher Druck ist notwendig,
um 1,00 dm? Luft bei 25 °C und 1,00 atm bei gleicher
Temperatur auf ein Volumen von 100 cm? zu kompri-
mieren?

1.1.7 Behalter, die Gase unter Druck enthalten, sind
gewohnlich mit einem Warnhinweis ausgestattet, da
sie unbedingt vor hohen Temperaturen geschiitzt wer-
den miissen. Eine Sprithdose, deren Treibgas bei 18 °C
einen Druck von 125 kPa austibt, wird in ein Feuer ge-
worfen. Wie grof} ist der Druck des Gases, wenn die
Temperatur der Dose auf 700 °C angestiegen ist?

1.1.8 An Orten, die tief unter dem Meeresspiegel
oder auf der Mondoberfliche liegen, miissen wir den
zur Atmung benétigten Sauerstoff in komprimierter
Form in Sauerstoftflaschen mit uns fithren. Berechnen
Sie den Druck von gasférmigem Sauerstoff, der aus-
gehend von einem Volumen von 7,20 dm? bei 101 kPa
auf ein Volumen von 4,21 dm? komprimiert wird.

1.1.9 Eine Probe Heliumgas nimmt bei 22,2°C ein
Volumen von 1,00dm? ein. Auf welche Temperatur
muss das Gas abgekiihlt werden, wenn das Volumen
auf 100 cm? verringert werden soll?



1.1.10 Der Auftrieb eines HeifSluftballons beruht da-
rauf, dass sich die Luft in der Ballonhiille beim Er-
wirmen ausdehnt und dadurch ihre Dichte abnimmt.
Auf welche Temperatur, ausgehend von 315K, muss
eine gegebene Luftmenge aufgeheizt werden, damit
das Volumen um 25 % zunimmt?

1.1.11  Auf Hohe des Meeresspiegels nimmt eine be-
stimmte Masse Luft bei einem Druck von 104 kPa und
einer Temperatur von 21,1 °C ein Volumen von 2,0 m3
ein. Wie grof3 ist das Volumen der gleichen Luftmas-
se in hoheren Regionen der Atmosphire bei Werten
fiir Druck und Temperatur von (a) 52 kPa, —-5,0 °C und
(b) 880 Pa, —52,0°C?

1.1.12 Die Verschmutzung der Atmosphire ist ein
Problem, das in den letzten Jahren sehr viel Aufmerk-
sambkeit erregt hat. Nun sind aber nicht alle Schad-
stoffe industriellen Ursprungs. Vulkanische Aktivita-
ten sind eine nicht zu vernachlissigende Quelle fiir
Luftschadstoffe. Der Vulkan Kilauea auf Hawaii zum
Beispiel emittiert 200 bis 300 t Schwefeldioxidgas pro
Tag (1t =1000kg). Wie grofs ist das Volumen des tdg-
lich ausgestoflenen Gases, wenn es bei einer Tempera-
tur von 800 °C und einem Druck von 1,0 atm abgege-
ben wird?

1.1.13 Berechnen Sie die Stoffmengenanteile (Mo-
lenbriiche) der Komponenten einer Mischung aus
56 g Benzol (C4Hg) und 120 g Methylbenzol (Toluol,
Ce¢H;CHj).

1.1.14 Um die Atmosphire eines anderen Plane-
ten nachzubilden, wird eine Gasmischung aus 320 mg
Methan, 175 mg Argon und 225 mg Stickstoff herge-
stellt. Bei 300K betragt der Partialdruck des Stick-
stoffs 15,2 kPa. Berechnen Sie (a) das Volumen und
(b) den Gesamtdruck der Gasmischung.

Abschnitt 1.2 - Die kinetische Gastheorie

1.2.1 Berechnen Sie mithilfe der kinetischen Gas-
theorie die quadratisch gemittelte Geschwindigkeit
von (a) N,-, (b) H,O-Molekiilen in der Erdatmosphire
bei 273 K.

1.2.2 Berechnen Sie die mittlere Geschwindigkeit
von (a) Heliumatomen und (b) CH,-Molekiilen bei
(i) 79K, (ii) 315 K und (iii) 1500 K.

1.2.3 Ein Synthesegas (auch ,Syngas” genannt) be-
steht aus einem Gemisch aus Wasserstoff und Koh-
lenmonoxid. Berechnen Sie die relative Rate, ausge-
driickt in Molekiilen pro Sekunde, mit der die H,-
und CO-Molekiile aus einem Zylinder entweichen, der
eine kleine Offnung besitzt.

Ubungsteil Fokus 1 - Gase

1.2.4 In einem Zylinder befindet sich Gas zum Be-
trieb eines CO,-Lasers, ein Gemisch aus jeweils glei-
chen Anteilen von Kohlendioxid, Stickstoff und He-
lium. Wie grof} ist die Masse des durch eine Off-
nung entweichenden Stickstoffs bzw. Heliums, wenn
im gleichen Zeitraum 1,0 g Kohlendioxid entwichen
ist?

1.2.5 Bei welchem Druck entspricht die mittlere
freie Weglinge von Argonatomen (¢ = 0,36 nm?) bei
25°C dem Durchmesser einer Kugel mit einem Volu-
men von 1,0 dm?3?

1.2.6 Fir die Untersuchung photochemischer Pro-
zesse in den oberen Schichten der Atmosphére beno-
tigen wir in der Regel die StofSzahlen verschiedener
Atome und Molekiile. In einer Hohe von 20 km betra-
gen Temperatur und Druck 217 K bzw. 0,050 atm. Wie
grof3 ist die mittlere freie Weglange von N,-Molekiilen
(0 = 0,43nm?) unter diesen Bedingungen? Wie vie-
le Stof8e pro Sekunde finden in dieser Hohe zwischen
den N,-Molekiilen statt?

1.2.7 Wie oft stofit ein Argonatom (Stofiquer-
schnitt o = 0,36 nm?) in 1,0 s bei einer Temperatur von
25 °C und einem Druck von (a) 10 bar, (b) 100 kPa und
(c) 1,0 Pa mit anderen Atomen zusammen?

1.2.8 Wie hingt die mittlere freie Weglédnge der Mo-
lekiile von der Temperatur des Gases ab, wenn das
Gasvolumen konstant bleibt?

1.2.9 Die Ausbreitung von Abgasen durch die Atmo-
sphéire wird im Wesentlichen durch Winde, teilweise
aber auch durch die Diffusion der Molekiile hervor-
gerufen. Die Geschwindigkeit des letzteren Prozesses
hangt davon ab, wie weit sich ein Molekiil bewegt, be-
vor es mit einem anderen Molekiil zusammenstofit.
Berechnen Sie die mittlere freie Weglédnge eines zwei-
atomigen Molekiils mit o = 0,43 nm? in Luft bei 25 °C
und (a) 10 bar, (b) 103 kPa und (c) 1,0 Pa.

Abschnitt 1.3 - Reale Gase

1.3.1 Der kritische Punkt von Ammoniakgas, NH;,
liegt bei 111,3 atm, 72,5 c¢m3 mol™! und 405,5K. Be-
rechnen Sie den Kompressionsfaktor am kritischen
Punkt. Was lasst sich aus dem Ergebnis schliefen?

1.3.2 In der folgenden Tabelle sind die kritischen
Konstanten fiir Methan, Ethan und Propan angege-
ben. Berechnen Sie aus diesen Daten die Kompressi-
onsfaktoren am kritischen Punkt fiir diese drei Gase.
Was konnen Sie aus den berechneten Werten erken-
nen?
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p/atm V, /(ecm3®mol™") T, /K
Methan, CH, 45,6 98,7 190,6
Ethan, C,H, 48,6 260 562,7
Propan, C;Hg 41,9 200 369,8

1.3.3 Berechnen Sie mithilfe der Virialgleichung den
Druck, den 1,00mol CH, bei 273K in einem Vo-
lumen von 1,00dm3 ausiibt. Bei dieser Tempera-
tur besitzt der zweite Virialkoeffizient B den Wert
—53,6 cm® mol~!. Gehen Sie davon aus, dass die Vi-
rialgleichung nach dem zweiten Term abbricht.

1.3.4 Das Molvolumen von Sauerstoff, O,, betrigt
3,90 dm3 mol~1 bei 10,0 bar und 200 °C. Gehen Sie da-
von aus, dass die Virialgleichung nach dem zweiten
Term abbricht, und berechnen Sie den zweiten Viri-
alkoeffizienten B fiir Sauerstoft bei dieser Temperatur.

1.3.5 Die Virialgleichung lésst sich in Abhéngigkeit
vom Druck auch schreiben als: Z =1+ B’ p + ... Die
kritischen Konstanten fiir Wasser, H,O, sind p =
218,3atm, Vi = 55,3 cm® mol™! und T, = 647,4K
Gehen Sie davon aus, dass die oben angegebene Form
der Virialgleichung nach dem zweiten Term abbricht,
und berechnen Sie den zweiten Virialkoeffizienten B’
fiir Wasser bei der kritischen Temperatur.

1.3.6 Berechnen Sie den Druck, den 1,0mol C,Hg
ausiibt, wenn Sie Ethan (a) als ideales Gas, (b) als
van-der-Waals-Gas betrachten, und zwar jeweils un-
ter den folgenden Bedingungen: (i) bei 273,15K
in 22,414 dm?3, (ii) bei 1000K in 100 cm3. Verwen-
den Sie zur Berechnung die Werte aus Tab. 1.5 in
Abschn. 1.3.5.

1.3.7 Wie zuverldssig sind die Werte, die Sie durch
Anwendung der idealen Gasgleichung erhalten im
Vergleich zur Anwendung der van-der-Waals-Glei-
chung? Berechnen Sie hierzu die Differenz der Drii-
cke, die sich aus der van-der-Waals-Gleichung und
der Zustandsgleichung des idealen Gases fiir 10,00 g
Kohlendioxid in einem Gefaf3 mit einem Volumen von
100 cm? bei 25,0°C ergeben.

1.3.8 Ein Gas gehorcht der van-der-Waals-Glei-
chung mit der Konstante a = 0,50 m® Pa mol~2. Das
Volumen betrigt 5,00 x 10~* m3 mol~! bei 273 K und
3,0 MPa. Berechnen Sie aus diesen Angaben die van-
der-Waals-Konstante b. Wie grof3 ist der Kompressi-
onsfaktor dieses Gases bei den angegebenen Werten
fiir Temperatur und Druck?

1.3.9 Berechnen Sie die Boyle-Temperatur fiir Koh-
lenstoffdisulfid, CS,, aus den gegebenen van-der-
Waals-Konstanten a = 11,77 dm®barmol™2, b =
0,076 85 dm? mol ™.

Verstandnisfragen

1.1 Beschreiben Sie, wie die von Boyle, Charles und
Avogadro durchgefiithrten Experimente zur Formulie-
rung der Zustandsgleichung des idealen Gases fiihr-
ten.

1.2 Erldutern Sie den Begriff ,Partialdruck” und
beschreiben Sie, warum das Dalton’sche Gesetz ein
Grenzgesetz ist.

1.3 Erklaren Sie mithilfe der kinetischen Gastheorie,
warum der Anteil leichter Gase, wie H, und He, in der
Erdatmosphire gering ist im Vergleich zu schwereren
Gasen wie O,, CO, und N,.

1.4 Erklaren Sie mithilfe einer molekularen Modell-
vorstellung die Temperaturabhingigkeit der Diffusi-
ons- und Effusionsraten von Gasen.

1.5 Erldutern Sie die Abhédngigkeit des Kompressi-
onsfaktors von Druck und Temperatur. Beschreiben
Sie, wie man aus dieser Abhidngigkeit Informationen
iber die intermolekularen Wechselwirkungen in rea-
len Gasen gewinnen kann.

1.6 Welche Bedeutung haben die kritischen Kon-
stanten eines Gases?

1.7 Beschreiben Sie die einzelnen Schritte, die zur
Aufstellung der van-der-Waals-Gleichung fithren.

Aufgaben

1.1 Eine Taucherglocke hat an Deck eines Schiffs ei-
nen Luftraum von 3,0 m3. Wie grof$ ist das Volumen
des Luftraums in 50 m Wassertiefe, wenn die Was-
sertemperatur mit der Temperatur der Luft auf Hohe
des Meeresspiegels iibereinstimmt? Nehmen Sie eine
mittlere Dichte des Meerwassers von 1,025 g cm™3 an.

1.2 Wetterballons werden auch heute noch einge-
setzt, um Informationen tiber die Atmosphire und das
Wetter zu erhalten. Im Jahr 1782 lief$ Jacques Charles
einen mit Wasserstoff gefiillten Ballon von Paris aus
25 km weit in die franzésische Landschaft fliegen. Wie
grofd ist die Dichte von Wasserstoff relativ zur Dichte
der Luft bei gleicher Temperatur und gleichem Druck?
Welche Nutzlast kann von einem Ballon mit 10kg
Wasserstoff transportiert werden, wenn die Eigenmas-
se des Ballons vernachlassigt wird?

1.3 Ein Wetterballon hat bei 20°C auf Hoéhe des
Meeresspiegels einen Radius von 1,5m. Nach Errei-
chen der maximalen Hohe dehnt sich der Ballon auf ei-
nen Radius von 3,5 m aus. Welcher Druck herrscht in-
nerhalb des Ballons, wenn die Temperatur —25 °C be-
tragt?



1.4 Wasser hat bei der Temperatur des Bluts einen
Dampfdruck von 47 Torr. Wie grof$ ist der Partial-
druck der trockenen Luft in der Lunge bei einem Ge-
samtdruck von 760 Torr?

1.5 Trockene Luft besteht, bezogen auf die Masse,
zu 75,53 % aus Stickstoff, und zu 23,14 % aus Sauer-
stoff. Der {ibrige Massenanteil setzt sich aus Edelgasen
zusammen, hauptsiachlich Argon. Wie grofd sind die
Stoffmengenanteile (Molenbriiche) der drei genann-
ten Gase?

1.6 Die Bestimmung der Dichte eines Gases oder
Dampfes gibt in guter Ndherung Aufschluss tiber sei-
ne Molmasse. Die Dichte einer gasformigen Substanz
in einem Glaskolben wurde bei 330 K und 25,2 kPa zu
1,23 gdm™3 bestimmt. Welche Molmasse besitzt das
untersuchte Gas?

1.7 Bei der experimentellen Bestimmung der Mol-
masse eines Gases wurden 250 cm? der Substanz in ei-
nen Glaskolben iiberfiihrt. Der Druck betrédgt 152 Torr
bei 298 K und die Masse des Gases wurde zu 33,5 mg
bestimmt. Welche Molmasse besitzt das untersuchte
Gas?

1.8 Ein Behilter mit einem Volumen von 22,4 dm3
enthélt 2,0mol H, und 1,0 mol N, bei 273,15 K. Be-
rechnen Sie (a) die Partialdriicke und (b) den Gesamt-
druck der Gasmischung.

1.9 Ein Glaskolben mit einem Volumen von 1,0 dm?
enthilt 1,0 x 10?3 H,-Molekiile. Wenn der Gasdruck
100 kPa betragt, wie grof} ist dann (a) die Tempera-
tur des Gases und (b) die quadratisch gemittelte Ge-
schwindigkeit der Molekiile? (c) Wire die Temperatur
eine andere, wenn es sich um O,-Molekiile handeln
wiirde?

1.10 Ein Methanmolekiil kann als sphérische Kugel
mit einem Radius von 0,38 nm angesehen werden. Wie
viele Stof3e erleidet jedes einzelne CH,4-Molekiil, wenn
sich eine Stoffmenge von 0,10 mol bei 25 °C in einem
Kolben von 1,0 dm? Volumen befindet?

1.11  Methanmolekiile, CH,, konnen als sphérische
Kugeln betrachtet werden, die einen Stofiquerschnitt
von ¢ = 0,46 nm? besitzen. Geben Sie eine Niherung
fiir den Wert der van-der-Waals-Konstante b an, in-
dem Sie das molare Ausschlussvolumen der Methan-
molekiile berechnen.

1.12 Eine Probe von 0,200 mol Cl, (g) befindet sich
in einem Behilter mit 250 cm® Volumen. Bei einer
Temperatur von 500K {ibt das Gas einen Druck von
3,06 MPa, und bei 1000 K von 6,54 MPa aus. Berech-
nen Sie die Werte der van-der-Waals-Konstanten a
und b fiir Chlorgas.

Ubungsteil Fokus 1 - Gase

1.13 Die kritischen Konstanten hdngen mit den
van-der-Waals-Konstanten {iber folgende Beziehun-
gen zusammen: py = a/(27b%), Vi = 3b und T} =
8a/(27Rb). Fur Ethan lauten die kritischen Konstan-
ten p, = 48,20atm, Vi = 148cm®mol~! und T} =
305,4 K. Berechnen Sie die van-der-Waals-Konstanten
fiir Ethangas und geben Sie einen Néherungswert fiir
den Molekiilradius an.

1.14 Durch Messungen bei 273K wurden die
Virialkoeffizienten von Argon bestimmt zu B =
—21,7 cm® mol~! und C = 1200 cm® mol~2. Wie grof3
sind die Werte der korrespondierenden Konstanten a
und b in der van-der-Waals-Gleichung?

Projekte

Das Symbol # bedeutet, dass die Anwendung von Dif-
ferenzial- oder Integralrechnung erforderlich ist.

1.1% Mithilfe der Differenzial- und Integralrechnung
kann die Maxwell-Boltzmann-Verteilung, p(v), de-
taillierter analysiert werden. (a) Die gemittelte Ge-
schwindigkeit von Molekiilen nach der Maxwell-
Boltzmann-Verteilung ist gegeben durch das Integral
[s> vp(v)dv. Zeigen Sie mithilfe der Maxwell'schen
Geschwindigkeitsverteilung, dass die mittlere Ge-
schwindigkeit der Molekiile in einem Gas mit der Mol-
masse M bei einer Temperatur 7' durch den Aus-
druck (8RT/nM)'/? gegeben ist. (Hinweis: Verwen-
den Sie ein Integral der Form f(;x’ x2Hlemax’ gy =
n!/2a"*1) (b) Zeigen Sie durch Analyse des Inte-
grals fom v2p(v) dv, dass die quadratisch gemittelte Ge-
schwindigkeit der Molekiile in einem Gas mit der Mol-
masse M bei einer Temperatur 7" durch den Ausdruck
(BRT/M )1/2 gegeben ist. (Hinweis: Verwenden Sie ein
Integral der Form f(;)o x21e=a%" dx = (IXx3x---x2n—
1)/2"+1a?)(nt/a)'/2.) (c) Die Geschwindigkeit, bei der
die Maxwell'sche Geschwindigkeitsverteilung den ma-
ximalen Wert annimmt, ergibt sich aus der Bedingung
dp(v)/dv = 0. Leiten Sie einen Ausdruck fiir die wahr-
scheinlichste Geschwindigkeit der Molekiile in einem
Gas mit der Molmasse M bei einer Temperatur T her.
(d) Berechnen Sie den Anteil aller N,-Molekiile, die
sich bei 500K mit einer Geschwindigkeit zwischen
290 und 300 m s~! bewegen.

1.2 Die kinetische Gastheorie ist immer dann giil-
tig, wenn die Grof3e der einzelnen Teilchen gegentiber
ihrer mittleren freien Weglédnge vernachldssigt wer-
den kann. Das Verhalten der dichten Materie im In-
neren der Sterne mit der kinetischen Gastheorie und
dem Modell des idealen Gases korrekt beschreiben
zu wollen, erscheint daher auf den ersten Blick eine
vollig absurde Idee zu sein. Im Zentrum der Sonne
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zum Beispiel ist die Dichte um den Faktor 150 gré-
er als die Dichte des fliissigen Wassers, auf halbem
Weg zur Sonnenoberfliche sind beide Dichten in et-
wa gleich groff. Nun liegt aber die Materie im In-
neren der Sterne als Plasma vor. Dieser besondere
Aggregatzustand zeichnet sich dadurch aus, dass Elek-
tronen und Atomkerne getrennt voneinander vorlie-
gen, es existieren also keine Atome mehr. Da die Son-
ne im Wesentlichen aus Wasserstoff und Helium be-
steht, liegen im Plasma der Sonne Teilchen mit der
Grofle von Wasserstoft- und Heliumkernen vor, de-
ren Durchmesser ungefihr 10 fm betrégt. Eine mittle-
re freie Wegldange von 0,1 pm reicht dann aus, um das
Kriterium fiir die Giiltigkeit der kinetischen Gastheo-
rie und der Zustandsgleichung des idealen Gases zu
erfiillen. Wir kénnen also (ndherungsweise) die Glei-
chung pV = nRT als Zustandsgleichung zur Beschrei-
bung des Sterneninneren verwenden. (a) Berechnen
Sie den Druck, der auf halbem Weg zum Zentrum
der Sonne herrscht. Wenn wir annehmen, dass das
Innere der Sonne zum allergrofiten Teil aus ionisier-
ten Wasserstoffatomen besteht, dann herrscht dort
eine Temperatur von 3,6 MK und die Dichte der Son-
ne ist mit 1,20 gcm™> etwas grofer als die Dichte des
flissigen Wassers. (b) Kombinieren Sie das Ergebnis
aus Teilaufgabe (a) mit dem Ausdruck, den die kine-
tische Gastheorie fiir den Druck liefert. Zeigen Sie,
dass der Druck p des Plasmas mit der Dichte der ki-
netischen Energie, pyi, = Eyin/V, der kinetischen En-
ergie der Molekiile in einer Region geteilt durch das
Volumen der betrachteten Region, iiber die Beziehung
p= % Plin Zusammenhingt. (c) Wie grof3 ist die Dich-
te der kinetischen Energie auf halbem Weg zum Zen-
trum der Sonne? Vergleichen Sie das Ergebnis mit der
Dichte der (translatorischen) kinetischen Energie in
der Erdatmosphire an einem warmen Tag (25 °C), die
nur 1,5 x 10°Jm~ (0,15] cm™3) betrigt. (d) In et-
wa 5 Milliarden Jahren wird sich unsere Sonne in ei-
nen Roten Riesen verwandeln. Dieser Vorgang ist un-
ter anderem damit verbunden, dass sich die dann im
Wesentlichen aus Helium bestehende Kugel im Zen-
trum der Sonne zusammenzieht und dabei sehr stark
aufheizt. Das fiihrt nicht nur dazu, dass die Fusions-
rate steigt und der Wasserstoff schneller verbraucht
wird, sondern auch zu Fusionsreaktionen, bei denen
schwerere Atomkerne wie zum Beispiel Kohlenstoff-
kerne entstehen. Der duflere Teil der Sonne hinge-

gen bldht sich auf und kiihlt ab. Nehmen Sie an, dass
auf halbem Weg zum Zentrum des Roten Riesen eine
Schicht vorliegt, die zum grofiten Teil aus vollig io-
nisierten Kohlenstoffatomen und Elektronen besteht
und eine Dichte von 1200 kg cm ™3 aufweist. Wie grof3
ist der Druck an dieser Stelle bei einer Temperatur
von 3500K? (e) Wie grof8 wire der Druck bei glei-
cher Temperatur und Dichte, wenn der Rote Riese
aus Teilaufgabe (d) aus neutralen Kohlenstoffatomen
bestiinde anstatt aus Kohlenstoftkernen und Elektro-
nen?

1.3 Durch Reihenentwicklung kann eine mathema-
tische Funktion der Form (1 — x)~! ausgedriickt wer-
den als Potenzreihe 1 + x + x% + ..., solange x <
1 ist. (a) Geben Sie die van-der-Waals-Gleichung in
Form einer Virialentwicklung in Potenzen von 1/V,,
an. (b) Die Boyle-Temperatur ist definiert als diejenige
Temperatur, bei der der zweite Virialkoeffizient B fir
ein van-der-Waals-Gas den Wert null annimmt. Ver-
wenden Sie den in Teilaufgabe (a) abgeleiteten Aus-
druck fiir B, um einen Ausdruck fiir die Boyle-Tem-
peratur in Abhéngigkeit von den van-der-Waals-Kon-
stanten a4 und b abzuleiten. (c) Berechnen Sie die
Boyle-Temperatur fiir Kohlendioxid, CO,, ausgehend
von den Werten @ = 3,610 atm dm® mol~2 und b =
4,29 x 1072 dm? mol 1.

1.4+ Mithilfe der Differenzial- und Integralrechnung
kann eine Beziehung zwischen den kritischen Kon-
stanten und den Parametern 4 und b eines van-der-
Waals-Gases abgeleitet werden. Der kritische Punkt
eines van-der-Waals-Gases entspricht genau dem Sat-
telpunkt der kritischen Isotherme. An diesem Punkt
gelten somit die Bedingungen dp/dV,, = 0 (die Stei-
gung der Isotherme ist null) und d?>p/dV?2 = 0 (die
Kriimmung der Isotherme ist null). (a) Berechnen
Sie diese beiden Ableitungen mithilfe von Gl. (1.30a)
und leiten Sie fiir die kritischen Grofien jeweils einen
Ausdruck in Abhingigkeit von den van-der-Waals-
Konstanten her. (b) Zeigen Sie, dass der Kompres-
sionsfaktor am kritischen Punkt den Wert > an-
nimmt. (c) Fur Stickstoffdioxid, NO,, nehmen die
van-der-Waals-Konstanten folgende Werte an: a =
5,354 dm® bar mol~! und b = 0,044 24 dm?3 mol~!. Be-
rechnen Sie die Werte der kritischen Konstanten und
zeigen Sie, dass der Kompressionsfaktor am kritischen
Punkt den Wert % annimmt.



