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ner Vielzahl örtlich begrenzter Quellen an die Atmo­
sphäre abgegeben. Die Gasmoleküle diffundieren von
der Quelle weg und verteilen sich im Laufe der Zeit
in der Umgebung. Im Allgemeinen wird der Vermi­
schungsprozess durch Luftbewegungen beschleunigt.
Das Entweichen eines Gases aus einem Gefäß durch
ein kleines Loch, zum Beispiel aus einem Reifen oder
einem aufgeblasenen Ballon, bezeichnet man als Effu­
sion (siehe Abb. 1.8).

(a)

(b)

Abb. 1.8 (a) Der Begriff Diffusion bezeichnet die Ausbreitung
von Molekülen einer Substanz in einen Raum, der ursprüng-
lich von einer anderen Substanz eingenommenwurde. Durch
die Bewegung der Moleküle beider Substanzen diffundiert
jede Substanz in die jeweils andere hinein. (b) Der Begriff Ef-
fusion bezeichnet das Entweichen von Molekülen aus einem
Gefäß durch ein kleines Loch.

Die Diffusions- und Effusionsraten von Gasen neh­
men mit steigender Temperatur zu, denn beide Pro­
zesse werden durchMolekülbewegungen hervorgeru­
fen. Aus dem gleichen Grund steigt die Geschwindig­
keit beider Prozesse mit abnehmender Molmasse der
Gase an. Eine einfache mathematische Abhängigkeit
von der Molmasse finden wir aber nur für die Effu­
sionsrate, da bei der Effusion im Normalfall nur eine
Molekülsorte betrachtet wird, während an einer diffu­
sionsbedingten Vermischung mindestens zwei unter­
schiedliche Gase beteiligt sind. Mit der Diffusion wer­
den wir uns erst in Abschn. 6.7 eingehender befassen.
Aus experimentellen Beobachtungen zur Abhängig­

keit der Effusionsrate eines Gases von seiner Molmas­
se leitete Thomas Graham 1833 das Graham’sche Ef­
fusionsgesetz ab:

Bei konstantem Druck und konstanter Temperatur ist
die Effusionsrate eines Gases umgekehrt proportional
zur Quadratwurzel der Molmasse des Gases:

Effusionsrate ∝ 1
M1∕2 . (1.22)

Die Effusionsrate entspricht der Anzahl anMolekülen
(der Stoffmenge in mol), die pro Sekunde aus demGe­
fäß entweicht, und sie ist proportional zur Fläche der
Öffnung, durch die die Moleküle entweichen: im Fol­
genden gehen wir davon aus, dass die Fläche der Öff­
nungen grundsätzlich identisch ist, wenn wir zwei Ef­
fusionsraten miteinander vergleichen.

Illustration 1.6: Das Graham’sche Effusionsgesetz

Das Verhältnis der Effusionsraten von molekula­
remWasserstoff (MolmasseM = 2,016 gmol−1) und
Kohlendioxid (M = 44,01 gmol−1) beträgt unter der
Voraussetzung, dass beide Gase den gleichen Druck
und die gleiche Temperatur aufweisen,

Effusionsrate von H2
Effusionsrate von CO2

=

(
MCO2

MH2

)1∕2

=
(
44,01 gmol−1

2,016 gmol−1

)1∕2

= 4,672 .

Die Masse des im gleichen Zeitraum aus dem Gefäß
entweichendenKohlendioxids ist größer als dieMas­
se des entweichendenWasserstoffs, denn obwohl et­
wa fünfmal so viele Wasserstoffmoleküle pro Zeit­
einheit das Gefäß verlassen, ist die Masse eines Mo­
leküls Kohlendioxid mehr als zwangzigmal so groß
ist wie die eines Wasserstoffmoleküls.

Hinweis Wenn Sie nur den Begriff Rate verwenden,
sollten Sie stets angeben, welche Größe sich zeitlich
ändert, denn der Begriff Rate allein ist nicht eindeu­
tig. In diesem Fall handelt es sich um eine Änderung
der Stoffmenge beziehungsweise der Zahl der Mole­
küle. Der Begriff Effusionsrate bezeichnet genau diese
Größe.

Selbsttest 1.8
Nehmen Sie an, dass 5,0 g Argon durch Effusion ent­
weichen.WelcheMasse Stickstoffwürde unter densel­
ben Bedingungen entweichen?

[Antwort: 4,2 g]

Die hohe Effusionsrate von Gasen mit einer sehr klei­
nen Molmasse wie Wasserstoff und Helium ist der
Grund dafür, warum diese sehr leicht durch porö­
se Gefäßwände (zum Beispiel aus Gummi) entwei­
chen. Die unterschiedlichen Effusionsraten durch po­
röse Barrieren macht man sich auch bei der Herstel­
lung von Kernbrennstäben aus Uran zu Nutze, bei der
das seltenere, spaltbare Isotop 235U (Anteil 0,720%)
vom wesentlich häufigeren 238U getrennt wird. Dabei
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wird das Uran in die leicht flüchtige, feste Verbindung
Uranhexafluorid überführt. Die unterschiedlichen Ef­
fusionsraten von 235UF6 und 238UF6 führen nun zu ei­
nerAnreicherung des leichteren Isotops. Da allerdings
das Verhältnis der Molmassen beider Substanzen le­
diglich 1,008 beträgt, ist die Effusionsrate von 235UF6
nur um den Faktor 1,0081∕2 = 1,004 größer. Aus die­
sem Grund sind tausende solcher Effusionsprozesse
notwendig, um eine signifikante Anreicherung zu er­
zielen.
Das Graham’sche Effusionsgesetz ergibt sich in ein­

facherWeise aus der kinetischen Gastheorie, denn die
mittlere Geschwindigkeit c der Gasmoleküle ist nach
Gl. (1.20a) umgekehrt proportional zur Quadratwur­
zel der Molmasse. Da die Effusionsrate, die Zahl der
pro Zeiteinheit durch ein Loch austretenden Molekü­
le, proportional zur Anzahl der Moleküle ist, die die­
se Öffnung erreichen (und damit auch proportional zu
deren Geschwindigkeit), ist die Effusionsrate ebenfalls
umgekehrt proportional zu M1∕2.

1.2.5 Intermolekulare Stöße

Die Strecke, die ein Molekül im Durchschnitt zwi­
schen zwei Stößen zurücklegt, wird mittlere freie
Weglänge λ (lambda) genannt. Die mittlere freie
Weglänge der Moleküle in Flüssigkeiten entspricht
nur einem Bruchteil ihres eigenen Durchmessers, da
sie unmittelbar auf ein benachbartes Molekül treffen,
sobald sie ihre Position auch nur einen Bruchteil ih­
res eigenenDurchmessers verändern. In Gasen hinge­
gen kann die mittlere freieWeglänge mehrere hundert
Moleküldurchmesser betragen.Wennwir uns dieMo­
leküle in einem Gas als Tennisbälle vorstellen, dann
wäre die mittlere freie Weglänge typischerweise in et­
wa so groß wie die Länge eines Tennisplatzes. Wie wir
in der folgenden Herleitung 1.2 sehen werden, beträgt
die mittlere freie Weglänge eines Moleküls in einem
idealen Gas

λ = kT
21∕2σ p

(1.23)

wobei σ (sigma) denStoßquerschnitt bezeichnet, also
diejenige Fläche eines Moleküls, die am Stoß beteiligt
ist. Wenn wir nun einen Stoß definieren als ein Ereig­
nis, bei dem sich zweiMoleküle bis auf einenbestimm­
tenAbstand d nähern, demMoleküldurchmesser (also
das Zweifache ihres Radius), dann gilt σ = πd2 (siehe
Abb. 1.9).

Herleitung 1.2: Die mittlere freie Weglänge

Zur Berechnung der mittleren freien Weglänge ge­
hen wir davon aus, dass ein Molekül im Verlauf sei­

Durchmesser, d 

Radius, d 

Abb. 1.9 Um das Stoßverhalten der Moleküle eines idealen
Gases quantitativ beschreiben zu können, betrachtetman die
Moleküle als Zentren von Kugeln mit dem Durchmesser d.
Ein Molekül stößt mit einem anderen zusammen, wenn sich
letzteres in einem Zylinder mit dem Radius d befindet und
sich beide Moleküle parallel zur Zylinderachse aufeinander zu
bewegen. Der Stoßquerschnitt eines Moleküls entspricht der
Querschnittsfläche πd2 des Zylinders.

ner Bewegung durch den Raum mehrfach mit ande­
ren Molekülen zusammenstößt. Es gilt

λ =
mittlere zurückgelegte Weglänge

mittlere Anzahl der Stöße
.

Sowohl den Zähler als auch der Nenner in dieser
Gleichung müssen wir nun durch mathematische
Terme ausdrücken, die physikalische Größen enthal­
ten. Beide Komponenten hängen von der mittleren
Geschwindigkeit der Moleküle ab.

Schritt 1: Formulierung des Zählers.
Diese Formulierung ist einfach: innerhalb eines Zeit­
intervalls Δt legt einMolekül dieWegstrecke l = cΔt
zurück.

Schritt 2: Formulierung des Nenners.
Im selben Zeitintervall Δt durchläuft das Molekül
einen Zylinder mit dem Volumen σcΔt. Sofern sich
ein weiteres Molekül innerhalb des Zylinders befin­
det, kommt es zum Stoß. Wenn wir die Partikelzahl­
dichte des Gases mit N bezeichnen, dann ergibt sich
die Anzahl der Kollisionen aus demProdukt aus dem
durchlaufenen Volumen mal Partikelzahldichte, also
σcΔtN . Allerdingsmüssen wir berücksichtigen, dass
sich nicht nur das stoßende Molekül bewegt, son­
dern auch dessen Stoßpartner. Daher sollten wir ge­
nauer anstelle von c von der mittleren relativen Ge­
schwindigkeit derMoleküle crel sprechen, und für die
Anzahl der Stöße schreiben: σcrelΔtN .

Schritt 3: Formulierung der Partikelzahldichte.
Die Partikelzahldichte ist N = N∕V . Aus dem idea­
len Gasgesetz, pV = nRT mit n = N∕NA (NA ist die
Avogadro-Konstante), ergibt sich, dass n∕V = p∕RT
ist. Daraus folgt N∕V = nNA∕V = pNA∕RT . Wenn
wir noch bedenken, dass R = NAk ist (mit der Boltz­
mann-Konstanten k), dann ergibt sich N = p∕kT .
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Schritt 4: Berechnung der mittleren relativen Ge­
schwindigkeit.
Es existiert eine einfache Beziehung zwischen der
mittleren Geschwindigkeit und der mittleren relati­
ven Geschwindigkeit: um sie zu finden, müssen wir
dieMolmasse einesMoleküls in Gl. (1.20b) durch die
reduzierte (molare) Masse ersetzen. Wie wir an an­
derer Stelle noch sehen werden, wird die reduzierte
MolareMasse μ in Gleichungen verwendet, in denen
die relative Bewegung von Partikeln betrachtet wird.
Für Partikel der Massen mA bzw. mB gilt

μ =
mAmB

mA + mB
.

Für zweiMolekülemit identischenMassenm gilt da­
her für die reduzierte Masse μ = 1

2m, und die re­
duzierte molare Masse ist 1

2M. Mit Gl. (1.20b) folgt,
dass

crel =

(
8RT

π × 1
2M

)1∕2

= 21∕2
(8RT
πM

)1∕2
= 21∕2c

und daher ergibt sich die mittlere Anzahl der Stöße
im Zeitintervall Δt zu 21∕2σcΔtN .

Schritt 5:Kombination der Terme für Zähler undNen­
ner.
Für diemittlere freieWeglänge ergibt sich schließlich

λ = cΔt
21∕2σΔtN

= 1
21∕2σN

= kT
21∕2σ p

.

Dies entspricht Gl. (1.23).

Die Stoßrate eines Moleküls, also die mittlere An­
zahl der Stöße pro Molekül und Zeiteinheit, wird als
Stoßzahl z bezeichnet. Der Kehrwert der Stoßzahl
1∕z entspricht der Zeit, die ein Molekül im Durch­
schnitt zwischen zwei Stößen im freien Flug zurück­
legt.Wenn einMolekül beispielsweise imMittel zehn­
mal pro Sekunde mit anderen Molekülen zusammen­
stößt, dann hat die Stoßzahl den Wert 10 s−1 und die
mittlere Zeit zwischen zwei Stößen beträgt 1

10 s. Bei
1 atm und Raumtemperatur stößt ein Molekül etwa
eine Milliarde Mal pro Sekunde mit anderen Mole­
külen zusammen (z = 109 s−1), daher beträgt die Zeit
zwischen zwei Stößen unter diesen Bedingungen im
Durchschnitt etwa 1 ns.
Wenn wir die mittlere freie Weglänge λ, also die im

Mittel während eines freien Flugs zurückgelegte Stre­
cke, durch die Zeit 1∕z zwischen zwei Stößen dividie­
ren, solltenwir einemittlere Geschwindigkeit derMo­
leküle erhalten. Es folgt, dass diemittlere freieWeglän­

ge und die Stoßzahl wie folgt zusammenhängen:

crel =

λ
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
mittlere freie Weglänge

Zeit zwischen zwei Stößen
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

1∕z

= λ
1∕z

= λz (1.24)

Mit der Definition für λ aus Gl. (1.23) und crel = 21∕2c
(siehe Herleitung 1.2) ergibt sich

z =
crel
λ

= 21∕2c
kT
2

1∕2
σ p

=
2σ pc
kT

und daher, durch Kombination mit Gl. (1.20b), für die
Stoßzahl (ideales Gas):

z =
2σ p
kT

(8RT
πM

)1∕2
. (1.25)

Illustration 1.7: Die mittlere freie Weglänge

Mit den Angaben aus Tab. 1.3 und Gl. (1.23) können
wir die mittlere freie Weglänge von O2-Molekülen
bei Standardtemperatur und Standarddruck (SATP,
25 °C, 1 bar) berechnen:

λ =

k
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

1,381 × 10−23 J K−1 ×

T
⏞⏞⏞

298K
21∕2 × 0,40 × 10−18 m2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
σ

× 1,00 × 105 Pa
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

p

= 1,381 × 10−23 × 298
21∕2 × 0,40 × 10−18 × 1,00 × 105

J
Pam2

= 7,3 × 10−8 m = 73 nm .

Wir haben hier die Beziehungen 1 J = 1 Pam3 und
1 nm = 10−9 m verwendet. Unter diesen Bedingun­
gen beträgt die Stoßzahl 8,6 × 109 s−1. Das bedeutet,
jedes Molekül stößt 8,6 Milliarden Mal pro Sekunde
mit einem anderen zusammen.

Selbsttest 1.9
Wie groß ist die Stoßzahl für Cl2-Moleküle in einer
Chlorgas-Probe unter denselben Bedingungen?

[Antwort: 10 ns−1]

Auch an dieser Stelle wollen wir einige wichtige
Zusammenhänge aus den Ausdrücken für λ und z
(Gln. (1.23) bis (1.25)) ableiten:

• Aus der Proportionalität λ ∝ 1∕p ergibt sich: Die
mittlere freie Weglänge nimmt ab, wenn der Druck
zunimmt.
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Tab. 1.3 Stoßquerschnitte einiger Atome und Moleküle.

Spezies σ∕nm2

Argon, Ar 0,36
Ethen, C2H4 0,64
Benzol, C6H6 0,88
Methan, CH4 0,46
Chlor, Cl2 0,93
Kohlendioxid, CO2 0,52
Wasserstoff, H2 0,27
Helium, He 0,21
Stickstoff, N2 0,43
Sauerstoff, O2 0,40
Schwefeldioxid, SO2 0,58

1 nm2 = 10−18 m2.

Eine Zunahme des Drucks bedeutet, dass bei kon­
stanter Temperatur in einem bestimmten Volumen
mehr Moleküle vorhanden sind. Dadurch reduziert
sich die mittlere freie Weglänge, denn das einzel­
ne Molekül trifft häufiger auf andere Moleküle und
legt zwischen zwei Stößen eine kürzere Strecke zu­
rück. So sinkt beispielsweise die mittlere freie Weg­
länge vonO2-Molekülen von 73 auf 36nm,wenn der
Druck bei 25 °C von 1,0 auf 2,0 bar verdoppelt wird.

• Aus der Proportionalität λ ∝ 1∕σ ergibt sich: Die
mittlere freie Weglänge nimmt mit zunehmendem
Stoßquerschnitt der Moleküle ab.
Wenn dieMoleküle einen größeren Stoßquerschnitt
besitzen, nimmt die Wahrscheinlichkeit für Kolli­
sionen mit anderen Molekülen zu, folglich verrin­
gert sich auch die mittlere freieWeglänge. Der Stoß­
querschnitt σ von Benzolmolekülen (0,88 nm2) ist
etwa viermal so groß wie der von Heliumatomen
(0,21 nm2), bei gleichem Druck und gleicher Tem­
peratur ist deshalb die mittlere freie Weglänge von
Benzolmolekülen viermal kürzer (siehe Tab. 1.3).

• Aus der Proportionalität z ∝ p ergibt sich:Die Stoß­
zahl steigt, wenn der Druck zunimmt.
Bei gleicher Temperatur benötigt ein Molekül in ei­
nemdichteren, komprimiertenGaswenigerZeit, bis
es auf ein benachbartes Molekül trifft. Dadurch er­
höht sich bei zunehmendem Druck die Stoßzahl.
So führt die Verdopplung des Drucks von Sauer­
stoffgas auch zu einer Verdopplung der Stoßzahl der
O2-Moleküle, z. B. von 8,6 × 109 s−1 unter SATP-
Bedingungen (siehe Illustration 1.7) auf 17× 109 s−1

bei Erhöhung des Drucks auf 2,0 bar (und konstan­
ter Temperatur).

• Aus denProportionalitäten z ∝ c und c ∝ 1∕M1∕2 er­
gibt sich: Schwere Moleküle stoßen pro Zeiteinheit

seltener mit anderen zusammen als leichte Molekü­
le, sofern ihr Stoßquerschnitt identisch ist.
Schwere Moleküle bewegen sich bei gleicher Tem­
peratur im Mittel langsamer als leichte Moleküle.
Daher ist auch ihre Stoßzahl geringer, d. h. sie kol­
lidieren seltener mit anderen Molekülen.

Schlüsselkonzepte

1. Die kinetische Gastheorie berücksichtigt aus­
schließlich die kinetische Energie der Gasmolekü­
le.

2. Wichtige Ergebnisse dieses Modells sind die abge­
leiteten Beziehungen für den Druck und die qua­
dratisch gemittelte Geschwindigkeit.

3. Sowohl die quadratisch gemittelte Geschwindig­
keit als auch die mittlere Geschwindigkeit von
Molekülen sind proportional zur Quadratwurzel
der Temperatur, und umgekehrt proportional zur
Quadratwurzel der Molmasse.

4. Die Maxwell’sche Geschwindigkeitsverteilung
gibt für jede beliebige Temperatur den Anteil der
Moleküle eines Gases an, die Geschwindigkeiten
innerhalb eines bestimmten Bereiches besitzen.

5. Das Graham’sche Effusionsgesetz besagt, dass
bei vorgegebenemDruck undTemperatur die Effu­
sionsrate eines Gases umgekehrt proportional zur
Quadratwurzel der molaren Masse der Gasmole­
küle ist.

6. Die Stoßzahl ist definiert als die Anzahl der Kol­
lisionen eines Moleküls innerhalb eines Zeitinter­
valls geteilt durch die Dauer dieses Intervalls.

7. Diemittlere freie Weglänge ist die durchschnitt­
liche Wegstrecke, die ein Molekül zwischen zwei
Stößen zurücklegt.

1.3 Reale Gase

Motivation
Reale Gase weichen in ihrem Verhalten von der Mo-
dellvorstellung des idealen Gases ab, und es ist wich-
tig diese real existierenden Eigenschaften beschrei-
ben zu können. Diese Abweichungen vom idealen
Verhalten erlauben es, einen tiefer greifenden Ein-
blick in die Natur der Wechselwirkungen zwischen
Molekülen zu gewinnen. Die Berücksichtigung und
Beschreibung dieser Wechselwirkungen ist darüber
hinaus ein exzellentes Beispiel für die Verfeinerung
von theoretischen Modellvorstellungen in der Physi-
kalischen Chemie.
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Schlüsselideen
Anziehungs- und Abstoßungskräfte zwischen Gas-
molekülen sind die Ursache für das nicht-ideale Ver-
halten der Isothermen und das kritische Verhalten
realer Gase.

Voraussetzungen
Dieser Abschnitt baut auf unserer Diskussion der
idealen Gase in Abschn. 1.1 auf, und wir werden da-
raus weitergehende Überlegungen ableiten. Hierzu
benötigen wir ein neues mathematisches Werkzeug,
die Differenzialrechnung, die es uns ermöglicht,
Wendepunkte im Verlauf von Kurven zu identifizie-
ren. Dieses wichtige mathematische Verfahren wird
in „Toolkit 5: Differenzialrechnung“ vorgestellt.

Bei unseren Überlegungen in Abschn. 1.2 zur kine­
tischen Gastheorie haben wir vorausgesetzt, dass in
einem idealen Gas die mittlere freie Weglänge λ der
Gasmoleküle wesentlich größer als ihr Durchmesser d
ist; d betrachten wir dabei als denjenigen Abstand, bei
dem sich die Moleküle miteinander in Kontakt befin­
den sollen:

Bedingung für das ideale Verhalten eines Gases: λ≫ d.

Aufgrund des großenmittleren Abstands derMolekü­
le trägt in einem idealen Gas nur die kinetische En­
ergie der molekularen Bewegung zur Gesamtenergie
bei, während die potenzielle Energie aus intermoleku­
laren Wechselwirkungen keinen Beitrag liefert. In der
Realität treten solche Wechselwirkungen bei hinrei­
chend kleinemAbstand derMoleküle auf, daher ist die
Vernachlässigung der potenziellen Energie nur eine
Näherung, und wir müssen unser Modell erweitern.
In der Physikalischen Chemie bauen komplexe The­
orien häufig auf einfacheren Modellvorstellungen auf,
die sukzessive verfeinert werden, um sie mit den be­
obachteten Ergebnissen weitergehender Experimente
in Einklang zu bringen.

1.3.1 Intermolekulare Wechselwirkungen

Wir können zwei verschiedene Formen der Wechsel­
wirkung zwischen Molekülen unterscheiden, anzie­
hende und abstoßende. Moleküle mit vergleichsweise
großemAbstand (einige Moleküldurchmesser) ziehen
einander an. Dies ist die Ursache dafür, dass Gase bei
niedrigen Temperaturen zu Flüssigkeiten kondensie­
ren. Unterschreitet die Temperatur eines Gases einen
bestimmten Wert, dann reicht die kinetische Energie
der Moleküle nicht mehr aus, um den Anziehungs­
kräften der Nachbarn entgegenzuwirken, und dieMo­

leküle halten sich gegenseitig fest.Wenn zweiMolekü­
le hingegen miteinander in engen Kontakt kommen,
stoßen sie einander ab. Die abstoßende Wechselwir­
kung ist der Grund dafür, dass Flüssigkeiten und Fest­
körper ein definiertes Volumen besitzen und nicht in
einen winzigen Punkt zusammenfallen.
Intermolekulare Wechselwirkungen – die Anzie­

hung und Abstoßung vonMolekülen – tragen zur po­
tenziellen Energie und damit auch zur Gesamtener­
gie eines Gases bei. Wenn sich Moleküle einander nä­
hern, kommt es zu einer anziehenden Wechselwir­
kung und, damit verbunden, zu einer Absenkung der
Gesamtenergie: Anziehende Wechselwirkungen leis­
ten einen negativen Beitrag zur Gesamtenergie. Bei
hinreichend kleinem Abstand der Moleküle setzen
abstoßende Wechselwirkungen ein, die zu einer Er­
höhung der Gesamtenergie führen und somit einen
positiven Beitrag leisten. Abbildung 1.10 zeigt den
allgemeinen Verlauf der intermolekularen potenziel­
len Energie in Abhängigkeit vom Abstand. Anziehen­
de Wechselwirkungen (negativer Beitrag zur Gesamt­
energie) sind imBereich größererAbstände dominant,
abstoßende Wechselwirkungen (positiver Beitrag zur
Gesamtenergie) im Bereich kleiner Abstände.
Die Wechselwirkungen der Moleküle untereinan­

der haben auch einen Einfluss auf die makroskopi­
schen Eigenschaften und damit die Zustandsgleichun­
gen der Gase. So entspricht beispielsweise der Verlauf
von Isothermen realer Gase nicht der Vorhersage des
Boyle’schen Gesetzes. Dies trifft insbesondere für ho­
he Drücke und tiefe Temperaturen zu, denn bei die­
sen Bedingungen spielen die Wechselwirkungen eine
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0 Kernabstand

Anziehung dominiert
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Abb. 1.10 Abhängigkeit der potenziellen Energie vom Ab-
stand zweier Moleküle. Eine große positive potenzielle Energie
bei sehr kleinen Abständen ist ein Anzeichen für stark absto-
ßendeWechselwirkungen. Bei etwas größeren Abständen
(einigeMoleküldurchmesser) dominieren anziehendeWech-
selwirkungen und die potenzielle Energie ist negativ. Sind die
Moleküle weit voneinander entfernt, so wechselwirken sie
nicht mehr miteinander, und die potenzielle Energie ist null.
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besonders große Rolle. Abbildung 1.11 zeigt einige ex­
perimentell bestimmte Isothermen von Kohlendioxid.
Obwohl die gemessenen Isothermen denjenigen des
idealenGases (Abb. 1.1) bei hohenTemperaturen (und
niedrigen Drücken, außerhalb des in Abb. 1.11 gezeig­
ten Ausschnitts) durchaus ähneln, sind doch erhebli­
che Unterschiede für Temperaturen unter 50 °C und
Drücke oberhalb von 1 bar vorhanden.

1.3.2 Die kritische Temperatur

Um den genauen Verlauf der Isothermen in Abb. 1.11
zu verstehen, befassen wir uns mit der Isotherme bei
20 °C und folgen ihrem Verlauf von Punkt A bis F:

• AmPunkt A ist dasKohlendioxid gasförmig, und die
Kurve verläuft wie die Isotherme eines idealen Ga­
ses.

Toolkit 5: Differenzialrechnung

Die erste Ableitung einer Funktion y(x) wird symboli-
siert mit dy∕dx. Sie gibt die Steigung der Funktion an
jedem Punkt der Kurve an (Abb. T1). Ein positiver Wert
für die erste Ableitung bedeutet einen Anstieg der Kur-
ve von links nach rechts (bei größer werdendem x); ein
negativer Wert für die erste Ableitung bedeutet einen
Abfall der Kurve; wenn die erste Ableitung null ist, be-
sitzt die Kurve an der untersuchten Stelle ein Maximum
oder ein Minimum (und verläuft parallel zur x-Achse).

dy/dx < 0

dy/dx > 0 

dy/dx = 0

dy/dx = 0

x

y

Abb. T1

Eine wichtige Beziehung zur Bildung der ersten Ablei-
tung einer Funktion ist:

dxn

dx
= nxn−1

Wenndiebetrachtete Funktiondie allgemeineForm y=
mx2 + b besitzt, folgt daraus für die erste Ableitung – da
sowohl m als auch b Konstanten sind: dy∕dx = 2mx. In
diesem Fall vergrößert sich also die Steigung mit stei-
gendem x immer weiter. Die oben angegebene Bezie-
hung für dxn∕dx gilt auch, wenn n negativ ist, wie in
folgendem Beispiel (die erste Ableitung für die Funkti-
on 1∕x nach x):

d
dx

1
x

=
d(1∕x)
dx

= d

n = −1
⏞⏞⏞

(x−1)
dx

=

n
⏞⏞⏞

−x

n−1
⏞⏞⏞

−2

= − 1
x2

Die ersten Ableitungen für zwei wichtige Funktionen
lauten:

d
dx

eax = aeax
d
dx

ef (x) =
(
df (x)
dx

)
ef (x)

Zwei weitere, fundamentale Ergebnisse sind:

d
dx

1
a + bx

= − b
(a + bx)2

d
dx

1
(a + bx)2

= − 2b
(a + bx)3

Die Ergebnisse für komplexere Funktionen werden in
„Toolkit 11: Ableitungsregeln“ in Abschn. 4.1 bespro-
chen.
Die zweite Ableitung einer Funktion erhaltenwir, wenn
das Ergebnis der ersten Ableitung erneut abgeleitet
wird, geschriebend2y∕dx2. Beispiel: die ersteAbleitung
der Funktion y = mx2 + b lautet 2mx, die zweite Ab-
leitung derselben Funktion ist 2m. Für die Übungen in
diesem Buch sollten Sie wissen, dass

d2

dx2
1

a + bx
= d

dx

{
− b

(a + bx)2

}
= 2b2

(a + bx)3

ist. Ein positiver Wert für die zweite Ableitung bedeu-
tet, dass die Funktion an der untersuchten Stelle einMi-
nimum besitzt (Kurvenverlauf ∪-förmig); ein negativer
Wert bedeutet hingegen, dass die Funktiondort einMa-
ximumbesitzt (Kurvenverlauf∩-förmig).Wenndie zwei-
te Ableitung null ist, liegt ein Wendepunkt vor, an dem
die „Biegung“ der Kurve ihre Richtung ändert (Abb. T2).

d2y/dx2 > 0

d2y/dx2 < 0 d2y/dx2 = 0

x

y

Abb. T2
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Abb. 1.11 Experimentell bei unterschiedlichen Tempera-
turen bestimmte Isothermen von Kohlendioxid. Die kriti-
sche Isotherme ist die Isotherme bei der kritischen Temperatur
Tk = 31,04 °C.

• Komprimieren wir das Gas in einem Gefäß mit be­
weglichem Kolben so lange, bis wir auf der Isother­
me den Punkt B erreichen, so steigt der Druck in gu­
ter Näherung gemäß dem Boyle’schen Gesetz.

• Wir können die Kompression fortsetzen, bis das Gas
schließlich den Zustand C erreicht.

• Ab jetzt können wir den Kolben in das Gefäß hin­
eindrücken, ohne dass sich der Druck ändert (in
Abb. 1.11wird dieser Vorgang durch eine horizonta­
le Linie zwischen den Punkten C und E dargestellt).

• Um das Volumen der Substanz von Punkt E nach
Punkt F weiter zu reduzieren, muss der Druck ganz
erheblich erhöht werden.

Dieses Verhalten entspricht genau den Erwartungen
bei Kondensation eines Gases von Punkt C bis hin zu
einer Flüssigkeit am Punkt E. Wenn die Gefäßwände
durchsichtig wären, dann könnten wir den gesamten
Kondensationsprozess beobachten:

• Am Punkt C beginnt das Gas damit sich zu verflüs­
sigen.

• Die Kondensation ist abgeschlossen, wenn Punkt E
erreicht wird, und der Kolben befindet sich auf der
Flüssigkeitsoberfläche.

• Für die weitere Kompression der (jetzt flüssigen)
Substanz vomPunkt E weiter zu Punkt F sind erheb­
lich größere Druckänderungen erforderlich. Dies
zeigt, welche Kräfte überwunden werden müssen,
um eine Flüssigkeit auch nur um einen geringen Be­
trag zu komprimieren.

Betrachtenwir nun die intermolekularenWechselwir­
kungen, die eine Erklärung für das beobachtete Ver­
halten liefern:

• Die Abnahme des Volumens zwischen C und E hat
eine Verkleinerung der intermolekularen Abstän­
de zur Folge, was zu einer deutlichen Verstärkung
der anziehendenWechselwirkungen und somit zum
Übergang in den flüssigen Aggregatzustand führt.

• Im Übergang von E nach F wird versucht, Molekü­
le, die bereits in engem Kontakt zueinander stehen,
nochweiter zu komprimieren und die immer stärker
werdenden Abstoßungskräfte zwischen den Mole­
külen zu überwinden.

ImVerlauf der Kondensation (beispielsweise im Zu­
stand D) liegt die Substanz sowohl als Gas als auch
als Flüssigkeit vor. Beide Aggregatzustände sind durch
eine deutlich sichtbare Oberfläche voneinander ge­
trennt (Abb. 1.12). Auch bei geringfügig höherenTem­
peraturen (zum Beispiel bei 30 °C) ist es möglich,
durch eine Erhöhung des Drucks eine Änderung des
Aggregatzustands herbeizuführen. Die Umwandlung
tritt jedoch erst bei größeren Drücken auf. Zudem
ist es schwieriger, die Trennfläche genau zu erken­
nen, denn die Dichte des Gases ist wegen des hohen
Drucks fast genauso groß wie die Dichte der Flüs­
sigkeit. Bei einer Temperatur von 31,04 °C (304,19K)
scheint sich das Kohlendioxid-Gas kontinuierlich in
den kondensierten Zustand umzuwandeln, und es ist
keine Trennfläche zwischen den beiden Aggregatzu­
ständen zu erkennen. Diese Temperatur wird als kri­
tische Temperatur Tk bezeichnet. Sobald die Tem­
peratur einer Substanz mindestens so groß ist wie ih­
re kritische Temperatur, liegt unabhängig vom Druck
immer eine einzige Materieform vor, es gibt also keine
Trennungmehr zwischenFlüssigkeit undGas.EinGas
kann nur dann durch Druckerhöhung zu einer Flüssig­

steigende Temperatur 

T < Tk T ≈ Tk  T > Tk 

Abb. 1.12 Wird eine Flüssigkeit in einem abgedichteten Be-
hälter erhitzt, nimmt die Dichte der flüssigen Phase ab, die
Dichte der Gasphase nimmt zu (linker und mittlerer Behälter;
die Dichteänderung der jeweiligen Phase ist durch unter-
schiedliche Schattierungen angedeutet). Wenn die kritische
Temperatur erreicht ist, sind die Dichten beider Phasen gleich,
und die Grenzfläche verschwindet (rechter Behälter). Ein sol-
cher Behälter muss hohen Drücken und Temperaturen stand-
halten können: Der Dampfdruck von Wasser beträgt bei der
kritischen Temperatur von 373 °C bereits 218 atm.
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Tab. 1.4 Kritische Temperaturen einiger Gase.

Kritische Temperatur Tk/°C

Edelgase
Helium, He –268 (5,2 K)
Neon, Ne –229
Argon, Ar –123
Krypton, Kr –64
Xenon, Xe 17

Halogene
Chlor, Cl2 144
Brom, Br2 311

Kleine anorganische Moleküle
Ammoniak, NH3 132
Kohlendioxid, CO2 31
Wasserstoff, H2 –240
Stickstoff, N2 –147
Sauerstoff, O2 –118
Wasser, H2O 374

Organische Verbindungen
Benzol, C6H6 289
Methan, CH4 –83
Tetrachlormethan, CCl4 283

keit kondensiert werden, wenn die Temperatur des Ga­
ses unterhalb der kritischen Temperatur liegt.
Wenn wir uns in Abb. 1.11 auf die kritische Iso­

therme – also diejenige Isotherme bei der kritischen
Temperatur Tk – konzentrieren, erkennen wir, dass
die Volumina der Substanz in den Zuständen C und E
identisch sind und in einem einzelnen Punkt, dem
sogenannten kritischen Punkt, zusammen treffen.
Den zugehörigen Druck nennt man den kritischen
Druck pk, und das zugehörige Volumen das kritische
molare Volumen Vk der Substanz. Zusammen mit
der kritischen Temperatur Tk (siehe Tab. 1.4) nennt
man diese drei Größen auch die kritischen Konstan­
ten einer Substanz. Aus Tab. 1.4 können wir z. B. ent­
nehmen, dass Stickstoffgas oberhalb einer Temperatur
von 126K (–147 °C) nicht verflüssigt werden kann. Die
kritischeTemperaturwird gelegentlich verwendet, um
zwischen den Begriffen „Dampf“ und „Gas“ zu unter­
scheiden:

• Wir bezeichnen die Gasphase einer Substanz als
Dampf, wenn ihre Temperatur unterhalb der kri­
tischen Temperatur liegt. Dampf kann durch Kom­
pression alleine verflüssigt werden.

• Wir bezeichnen die Gasphase einer Substanz als
Gas, wenn ihre Temperatur oberhalb der kritischen
Temperatur liegt. Gas kann durch Kompression al­
leine nicht verflüssigt werden.

Daher ist Sauerstoff bei Raumtemperatur ein echtes
Gas, während es sich bei der Gasphase vonWasser bei
Raumtemperatur um einen Dampf handelt.
Wennwir einGas bei einerTemperatur oberhalb der

kritischenTemperatur komprimieren, erhaltenwir ein
dichtes fluidesMedium, das sich in vieler Hinsicht wie
eine Flüssigkeit verhält – seine Dichte beispielswei­
se ist vergleichbar mit der einer Flüssigkeit, und es
kann als Lösungsmittel wirken. Trotzdem kann man
das Fluid nicht als Flüssigkeit ansehen, denn es füllt ei­
nen Behälter stets vollständig aus (wie ein Gas), und es
ist nicht durch eine deutlich sichtbare Oberfläche von
der Gasphase getrennt. Es handelt sich aber aufgrund
der hohen Dichte auch nicht um ein Gas. Ein sol­
ches Medium nennt man überkritisches Fluid. Eini­
ge Stoffe im überkritischen Zustand werden in techni­
schen Prozessen als Lösungsmittel eingesetzt. So dient
überkritisches Kohlendioxid (scCO2) zur Extraktion
des Coffeins aus Kaffee. Ein Vorteil dieses Verfahrens
ist, dass es keine unerwünschten, möglicherweise gif­
tigenRückstände gibt. Gegenwärtig sind überkritische
Fluide auch deshalb von großem Interesse, weil sie
bei gewissen technischen Verfahren anstelle von Flu­
orchlorkohlenwasserstoffen (FCKW) eingesetzt wer­
den können, denn FCKW sind für ihren schädigen­
den Einfluss auf die Umwelt bekannt. Da (überkriti­
sches) Kohlendioxid entweder direkt aus der Atmo­
sphäre oder (durch Fermentation) aus erneuerbaren
organischenQuellen gewonnenwerden kann, wird die
Nettobelastung der Atmosphäre durch Kohlendioxid
nicht weiter erhöht.

1.3.3 Der Kompressionsfaktor

Eine nützlicheGröße zurCharakterisierung realerGa­
se ist der Kompressionsfaktor Z. Er ist definiert als
das Verhältnis der Molvolumina eines realen und ei­
nes idealen Gases bei gleicher Temperatur und glei­
chem Druck:

Z =
Vm

V ideal
m

. (1.26a)

In einem idealen Gas ist Vm = V ideal
m , also gilt stets

Z = 1. Daher ist die Abweichung des Kompressions­
faktors Z von 1 ein Maß für die Abweichung des Ver­
haltens eines Gases von der Idealität.
Das Molvolumen eines idealen Gases ist nach

Gl. (1.9b) in Abschn. 1.1 gegeben mit V ideal
m = RT∕p,

daher lässt sich die Definition von Z umschreiben zu

Z =
Vm

V ideal
m

=
Vm

RT∕p
=

pVm
RT

. (1.26b)

Abbildung 1.13 zeigt, wie sich der Kompressionsfak­
tor verschiedener realer Gase in Abhängigkeit vom
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Abb. 1.13 Druckabhängigkeit des Kompressionsfaktors Z für
verschiedene Gase bei 0 °C. Für das ideale Gas gilt unabhängig
vom Druck stets Z = 1. Bei dieser Temperatur zeigt von den
hier aufgeführten Gasen nur Wasserstoff im gesamten Druck-
bereich ein positives Abweichen vom idealen Verhalten. Alle
anderen Gase weichen bei hohen Drücken ebenfalls positiv,
bei niedrigen Drücken hingegen negativ vom idealen Verhal-
ten ab. Negative Abweichungen vom Verhalten des idealen
Gases sind eine Folge der Dominanz anziehenderWechselwir-
kungen, bei positiven Abweichungen dominieren abstoßende
Wechselwirkungen. Der Verlauf der Kurve Z(p) hängt von der
Temperatur ab.

Druck ändert. Bei niedrigen Drücken ist der Kom­
pressionsfaktor einiger Gase (zum Beispiel Methan,
Ethan und Ammoniak) kleiner als 1; das bedeutet,
die Molvolumina dieser Gase sind bei gleicher Tem­
peratur und gleichem Druck kleiner als das Molvo­
lumen des idealen Gases. Für diese Gase dominieren
bei moderaten Drücken anziehende Wechselwirkun­
gen, die eine Verringerung der intermolekularen Ab­
stände und damit auch des Gesamtvolumens verursa­
chen. Der Kompressionsfaktor aller Gase ist bei hohen
Drücken stets größer als 1, für manche Gase (Wasser­
stoff in Abb. 1.13) sogar im gesamten Druckbereich.
Der Verlauf der Kurve Z(p) hängt von der Tempera­
tur ab. Bei Z > 1 ist das Molvolumen des realen Gases
bei gleicher Temperatur und gleichem Druck größer
als dasMolvolumendes idealenGases. Bei hohenDrü­
cken sind die intermolekularen Abstände klein, daher
dominieren abstoßende Wechselwirkungen, die eine
weitere Kompression des Gases erschweren. Bei Was­
serstoffmolekülen sind die anziehenden Wechselwir­
kungen so schwach, dass bereits bei geringen Drücken
die abstoßenden Wechselwirkungen dominieren.

Illustration 1.8: Der Kompressionsfaktor

Ein Gas nehme bei T = 250K und p = 15 atm ein
molares VolumenVm ein, das um 12% geringer ist als
man es bei idealem Verhalten erwarten würde. Also
ist

Vm − V ideal
m

V ideal
m

= − 12
100

.

Daraus folgt

Vm

V ideal
m

− 1 = −0,12 , also

Z =
Vm

V ideal
m

= 1 − 0,12 = 0,88 .

Da Z = 0,88 < 1 ist, können wir schließen, dass an­
ziehende Wechselwirkungen in der Gasprobe domi­
nieren.

Selbsttest 1.10
Ein Gas nehme bei T = 350K und p = 12 atm ein mo­
lares Volumen Vm ein, das um 12% größer ist als man
es bei idealem Verhalten erwarten würde. Berechnen
Sie den Kompressionsfaktor unter diesen Bedingun­
gen, sowie das Molvolumen des Gases. Dominieren in
der Gasprobe anziehende oder abstoßende Wechsel­
wirkungen?

[Antwort: Z = 1,12; Vm = 2,7 dm3 mol−1;
Abstoßung ist dominant]

1.3.4 Die Virialgleichung

Wir können die Abweichung des Kompressionsfak­
tors Z vom „idealen“Wert 1 dazu verwenden, eine em­
pirische, also eine auf experimentellen Befunden ba­
sierende, Zustandsgleichung aufzustellen. Wir wollen
annehmen, dass sich Z für reale Gase als eine Summe
sehr vieler Terme, beginnend mit dem Summanden 1,
darstellen lässt:

Z = 1 + B
Vm

+ C
V 2
m

+ … (1.27a)

Die Koeffizienten B, C, . . . werden als Virialkoeffizi­
enten bezeichnet: B ist der zweite Virialkoeffizient, C
der dritte usw. Der erste Virialkoeffizient (A) ist gleich
1. Das Wort „virial“ ist vom lateinischen Wort „vis“
(Kraft) abgeleitet, und soll die Bedeutung der intermo­
lekularen Kräfte für das Verhalten der Gase zum Aus­
druck bringen. Die Virialkoeffizienten B, C usw. wer­
den gelegentlich auch mit den Symbolen B2, B3 usw.
bezeichnet. Die Koeffizienten sind vonGas zuGas ver­
schieden und hängen von der Temperatur ab. Es ist in
der Physikalischen Chemie weit verbreitet, ein unter
gewissen Einschränkungen gültiges Gesetz (hier Z = 1
für Gase bei sehr großen Molvolumina) als Näherung
eines komplizierteren und universelleren Zusammen­
hangs anzusehen. In vielen Fällen kann der Gültig­
keitsbereich des einfachen Gesetzes durch zusätzliche
Terme schrittweise erweitert werden.



Peter W. Atkins, Julio de Paula: Kurzlehrbuch Physikalische Chemie — 2019/8/12 — Seite 31 — le-tex

311.3 Reale Gase

Der wichtigste zusätzliche Term auf der rechten Sei­
te von Gl. (1.27a) ist der zweite Term, der propor­
tional zu 1∕Vm ist, denn unter den meisten Bedin­
gungen (bei geringem Druck) kann der Term C∕V 2

m
wegen C∕V 2

m ≪ B∕Vm vernachlässigt werden. Dann
bestimmt im Wesentlichen der zweite Virialkoeffizi­
ent die Abhängigkeit des Kompressionsfaktors vom
Druck bzw. Molvolumen. Es gilt

Z = 1 + B
Vm

(1.27b)

Aus den Verläufen der Kurven in Abb. 1.13 können
wir auf die Vorzeichen der Virialkoeffizienten B und C
schließen. Wir können folgern, dass B für Wasserstoff
wegen Z > 1 positiv, für Methan, Ethan und Ammo­
niak hingegen wegen Z < 1 negativ ist. Das gilt natür­
lich nur für diejenige Temperatur, die den dargestell­
tenKurven zuGrunde liegt.Mit zunehmendemDruck
und damit abnehmendem V 2

m steigt der Einfluss des
dritten Summanden C∕V 2

m. Für positive Werte von C
ist daher der Kompressionsfaktor bei hohen Drücken
für alle Gase größer als 1 (Abb. 1.13). Um die Viri­
alkoeffizienten eines Gases zu bestimmen, muss zu­
nächst der Kompressionsfaktor in Abhängigkeit vom
Druck oderMolvolumen gemessen werden. Anschlie­
ßend kann ein Satz von Virialkoeffizienten durch ma­
thematische Anpassungsverfahren so bestimmt wer­
den, dass der Verlauf von Z über den gesamtenDruck-
bzw. Volumenbereich möglichst gut wiedergegeben
wird.
Die Virialkoeffizienten hängen von der Tempera­

tur ab. Bei der sogenannten Boyle-Temperatur TB
wird B = 0, dann vereinfacht sich Gl. (1.27b) zu Z =
1 und das Gas zeigt über einen engen Bereich von
Molvolumina ideales Verhalten. Die Boyle-Tempera­
tur von Stickstoff ist 327,2 K (54,1 °C), und für Koh­
lendioxid 714,8K (441,6 °C). Bei der Boyle-Tempera­
tur sind die anziehenden und abstoßenden Wechsel­
wirkungen gleich groß und heben sich daher gegen­
seitig auf.
Wir wollen nun Gl. (1.27a) in Form einer Zu­

standsgleichung angeben. Durch Kombination mit
Gl. (1.26b), Z = pVm∕(RT), erhalten wir

pVm
RT

= 1 + B
Vm

+ C
V 2
m

+ …

Wenn wir beide Seiten mit RT∕Vm multiplizieren und
zusätzlich Vm durch V∕n ersetzen, ergibt sich folgen­
der Ausdruck für p:

p = nRT
V

(
1 + nB

V
+ n2C

V 2 + …
)

. (1.28)

Gleichung (1.28) wird Virialgleichung genannt. Bei
sehr geringen Drücken sind wegen des entsprechend

großen Molvolumens die Terme nB∕V und n2C∕V 2

sehr klein und können, wie auch alle noch folgen­
den Summanden, vernachlässigt werden. Daher geht
die Virialgleichung im Grenzfall sehr kleiner Drücke
(p → 0) in die Zustandsgleichung des idealen Gases
über (vgl. Gl. (1.5b)).

Illustration 1.9: Die Virialgleichung

Das Molvolumen von NH3 beträgt 1,00 dm3 mol−1

bei p = 36,2 bar und T = 473K.Wennwir davon aus­
gehen, dass bei diesen Bedingungen die Virialglei­
chung als p = (RT∕Vm)(1+B∕Vm) geschriebenwer­
den kann, gilt

B =
(
pVm
RT

− 1
)
Vm .

Daraus ergibt sich folgender Wert für den zweiten
Virialkoeffizienten B:

B =
⎛⎜⎜⎜⎝

36,2 bar
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

36,2 × 105 Pa ×

1,00 dm3 mol−1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

1,00 × 10−3 m3 mol−1

8,3145 J K−1 mol−1 × 473K

⎞⎟⎟⎟⎠
× 1,00 × 10−3 m3 mol−1

= −79,5 × 10−6 m3 mol−1 = −79,5 cm3 mol−1 .

(Beachten Sie, dass die Einheit J im Nenner gegen
Pam3 = J im Zähler gekürzt wurde.)

Selbsttest 1.11
Der zweite Virialkoeffizient für NH3 beträgt B =
−45,6 cm3 mol−1 bei T = 573K. Berechnen Sie bei
dieser Temperatur den Druck, bei dem das Molvolu­
men von Ammoniak 1,00 dm3 mol−1 beträgt.

[Antwort: 45,5 bar]

1.3.5 Die van-der-Waals-Gleichung

Die Virialgleichung ist eine äußerst zuverlässige Zu­
standsgleichung. Ihr Nachteil besteht darin, wenig an­
schaulich zu sein. Wir können nicht auf den ersten
Blick erkennen, warum Gase vom idealen Verhal­
ten abweichen oder zu Flüssigkeiten kondensieren.
Im Jahr 1873 formulierte der holländische Physiker
Johannes van der Waals die nach ihm benannte genä­
herte Zustandsgleichung. Die van-der-Waals-Glei­
chung ist keine exakte Zustandsgleichung, zeigt je­
doch in sehr anschaulicher Weise, wie die intermo­
lekularen Wechselwirkungen zu Abweichungen vom
idealen Verhalten beitragen, und ist ein weiteres
Beispiel für eine mathematische, quantitativ nach­
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r 2r

Ausschluss-
volumen

Abb. 1.14 Wird ein Molekül als eine Kugel mit dem Radius r
und dem Volumen VMolekül = 4

3
πr3 behandelt, dann können

sich zwei Moleküle maximal bis auf den Abstand 2r annähern.
Das bedeutet, dass eine Kugel um ein Molekül mit dem Ra-
dius 2r und dem Volumen 8VMolekül für andere Moleküle nicht
zugänglich ist (siehe auch Herleitung 1.3).

prüfbare Beziehung auf der Basis eines tragfähigen
Modells.
Aufgrund der abstoßenden Wechselwirkung kön­

nen zwei Moleküle einander nicht beliebig nahe kom­
men, das heißt, ein bestimmter intermolekularer Ab­
stand kann nicht unterschritten werden. Das einzelne
Molekül kann sich also nicht innerhalb des gesamten
Volumens V frei bewegen. Wir müssen daher V um
einen bestimmtenWert reduzieren. Das zu subtrahie­
rende Volumen ist proportional zur Zahl der Mole­
küle und zum Volumen, das jedes einzelne Molekül
ausschließt, also für andere Moleküle unzugänglich
macht (Abb. 1.14). Wir können somit den Einfluss der
abstoßenden Kräfte berücksichtigen, indem wir in der
Zustandsgleichung des idealen Gases V durch V − nb
ersetzen. Die Proportionalitätskonstante b beschreibt
den Zusammenhang zwischen der Volumenabnahme
und der Stoffmenge des Gases. Wie wir in der folgen­
den Herleitung 1.3 zeigen werden, hängt b mit dem
Volumen eines einzelnen Moleküls wie folgt zusam­
men:

b ≈ 4VMolekülNA . (1.29)

Herleitung 1.3: Das Ausschlussvolumen eines
Gases

DasVolumen einer Kugelmit demRadius R ist 4
3 πR

3.
Wenn wir Moleküle als starre Kugeln betrachten,
wie in Abb. 1.14 gezeigt, können sich zwei Molekü­
le nur bis auf einen Abstand von 2r annähern, denn
VMolekül = 4

3πr
3. Daher beträgt das Ausschlussvo­

lumen 4
3π(2r)3 = 8( 43πr

3), bzw. 8VMolekül. Das Aus­
schlussvolumen bezogen auf ein einzelnes Molekül
beträgt exakt die Hälfte, also 4VMolekül. Damit ergibt
sich das Ausschlussvolumen für einMolGasmolekü­
le zu b ≈ 4VMolekülNA, was Gl. (1.29) entspricht.

Wir erhalten auf diesem Weg aus p = nRT∕V eine
modifizierte Form der Zustandsgleichung des idealen
Gases:

p = nRT
V − nb

.

Diese Zustandsgleichung entspricht noch nicht der
kompletten van-der-Waals-Gleichung, da der Einfluss
anziehender Wechselwirkungen nicht berücksichtigt
ist. Wir können sie aber bereits zur Beschreibung des
Verhaltens vonGasen verwenden, wenn die abstoßen­
den Wechselwirkungen dominant sind. Bei niedrigen
Drücken ist das GesamtvolumenV desGases sehr viel
größer als das Ausschlussvolumen der Moleküle. Die­
sen Sachverhalt gebenwir in der Form V ≫ nb an. Das
bedeutet, dass nb gegen V im Nenner des Bruchs ver­
nachlässigt werden kann, so dass sich wieder die Zu­
standsgleichung des idealen Gases ergibt.

Hinweis Es ist immer sinnvoll zu überprüfen, ob wir
ein bekanntes Gesetz erhalten, wenn wir eine aufge­
stellte Gleichung durch plausible physikalische Nähe­
rungen vereinfachen.

Während abstoßende Wechselwirkungen einen Ein­
fluss auf das Volumen haben, in dem sich dieMoleküle
frei bewegen können, bewirken anziehende Wechsel­
wirkungen eine Veränderung des Drucks. Wir wollen
annehmen, dass die anziehende Kraft auf ein einzelnes
Molekül proportional zur Konzentration n∕V des Ga­
ses ist. DieMoleküle werden durch anziehendeWech­
selwirkungen abgebremst und prallen daher seltener
undmit geringererWucht auf dieWände desGefäßes.
Wir können also erwarten, dass sich der Druck um
einen Betrag verringert, der proportional zum Qua­
drat der molaren Konzentration ist: Beide Effekte –
die Zahl der Stöße auf die Wand nimmt ab, gleichzei­
tig werden die Stöße schwächer – tragen jeweils einen
Faktor n∕V zur Verringerung des Drucks bei. Um den
Zusammenhang in Form einer Gleichung angeben zu
können, führen wir die Proportionalitätskonstante a
ein und erhalten

Druckabnahme = a ×
( n
V

)2
.

Wir fassen nun unsere Teilergebnisse zu einer Zu­
standsgleichung zusammen, die die Einflüsse von ab­
stoßenden und anziehenden Wechselwirkungen be­
rücksichtigt:

p = nRT
V − nb

− a
( n
V

)2
. (1.30a)

Dies ist die van-der-Waals-Gleichung. Um die Ähn­
lichkeit zur Zustandsgleichung des idealen Gases
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pV = nRT deutlich zu machen, können wir sie um­
formen, indem wir den zweiten Term auf der rechten
Seite durch Addition auf die linke Seite bringen, was
p + an2∕V 2 ergibt, und dann auf beiden Seiten der
Gleichung mit V − nb multiplizieren:(

p + an2

V 2

)
(V − nb) = nRT . (1.30b)

Wir haben die van-der-Waals-Gleichung anhand phy­
sikalischer Überlegungen aus der Zustandsgleichung
des idealen Gases abgeleitet. Hierzu haben wir das Ei­
genvolumen der Moleküle sowie den Einfluss der in­
termolekularen Kräfte betrachtet. Die van-der-Waals-
Gleichung kann auch auf andere Art hergeleitet wer­
den, aber der von uns eingeschlagene Weg ist sehr
anschaulich. Er hat darüber hinaus den Vorteil, dass
wir die van-der-Waals-Konstanten a und b einfüh­
ren konnten, ohne ihnen eine konkrete physikalische
Bedeutung zuschreiben zu müssen. In der Tat sind a
und b eher als empirische Parameter aufzufassen, das
heißt, es ist nicht möglich, diese Parameter quantita­
tiv auf molekulare Eigenschaften zurückzuführen. Die
van-der-Waals-Konstanten sind von Gas zu Gas ver­
schieden, jedoch im Unterschied zu den Virialkoeffi­
zienten von der Temperatur unabhängig. In Tab. 1.5
sind die van-der-Waals-Konstanten einiger Gase an­
gegeben. Aus der Art, wie wir die van-der-Waals-Glei­
chung abgeleitet haben, folgt:

• Die van-der-Waals-Konstante a (der Parameter für
die anziehenden Wechselwirkungen) sollte groß
sein für Moleküle, die einander stark anziehen.

• Die van-der-Waals-Konstante b (der Parameter für
die abstoßenden Wechselwirkungen) sollte groß
sein für Moleküle, die eine große Ausdehnung be­
sitzen.

Tab. 1.5 Van-der-Waals-Konstanten einiger Gase.

Substanz a
(102 kPadm6 mol−2)

b
(10−2 dm3 mol−1)

Luft 1,4 0,039
Ammoniak, NH3 4,225 3,71
Argon, Ar 1,355 3,20
Kohlendioxid, CO2 3,658 4,29
Ethan, C2H6 5,580 6,51
Ethen, C2H4 4,612 5,82
Helium, He 0,0346 2,38
Wasserstoff, H2 0,2452 2,65
Stickstoff, N2 1,370 3,87
Sauerstoff, O2 1,382 3,19
Xenon, Xe 4,192 5,16
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Abb. 1.15 Berechnete van-der-Waals-Isothermen. Druck
und Volumen sind auf den Achsen in Einheiten des kritischen
Drucks pk (pk = a∕(27b2)) bzw. des kritischen Volumens Vk
(Vk = 3b) angegeben. Die zu den einzelnen Isothermen gehö-
rigen Temperaturen sind in der Form T∕Tk (Tk = 8a∕(27Rb))
angegeben. Die zu T∕Tk = 1 gehörige Isotherme ist die kriti-
sche Isotherme, also die Isotherme bei der kritischen Tempera-
tur.

In Abb. 1.15 sind einige Isothermen gezeigt, diemit­
hilfe der van-der-Waals-Gleichung für unterschied­
liche Temperaturen berechnet wurden. Durch einen
Vergleich mit experimentell bestimmten Isothermen
(Abb. 1.11) könnenwir beurteilen, wie gut dieseNähe­
rungsgleichung das Verhalten realer Gase beschreibt.
Alles in allem werden die gemessenen Isothermen
recht gut reproduziert, abgesehen von demwellenarti­
gen Verlauf, den die genäherten Isothermen unterhalb
der kritischen Temperatur zeigen. Man nennt diesen
Abschnitt einer Isotherme van-der-Waals-Schleife.
Das von den van-der-Waals-Schleifen vorhergesagte
Verhalten ist physikalisch unsinnig, da innerhalb be­
stimmter Bereiche eine Erhöhung des Drucks zu einer
Volumenzunahme führen müsste. Deshalb kann man
die van-der-Waals-Schleifen durch geeignete horizon­
tale Linien ersetzen (Abb. 1.16). Die van-der-Waals-
Konstanten in Tab. 1.5 wurden durch eine Anpassung
der berechneten Kurven an die Verläufe gemessener
Isothermen bestimmt.
Aus Abschn. 1.3.1 wissen wir bereits, dass der Ver­

lauf der Isothermen realer Gase umso besser der Zu­
standsgleichung des idealenGases entspricht, je höher
die Temperatur und je geringer derDruck ist.Wir wol­
len nun prüfen, ob die van-der-Waals-Gleichung die­
sen Sachverhalt richtig wiedergibt. Wenn wir auf der
rechten Seite von Gl. (1.30a) einen hinreichend ho­
hen Wert für T einsetzen, ist der zweite Term sehr
viel kleiner als der erste und kann daher vernachläs­
sigt werden. Ferner ist bei genügend kleinen Drücken
das Ausschlussvolumen nb deutlich kleiner als das
Volumen V des Gases, so dass wir den Nenner im
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Abb. 1.16 Die physikalisch sinnlosen van-der-Waals-Schlei-
fen können durch horizontale Linien ersetzt werden, die die
Schleifen in zwei gleich große Flächen einteilen. Die Isother-
men, die sich nach dieser Korrektur ergeben, ähneln sehr stark
den experimentellen Isothermen.

ersten Term durch V ersetzen können. Die van-der-
Waals-Gleichung geht somit für hohe Temperaturen
undniedrigeDrücke in dieZustandsgleichungdes ide­
alen Gases (p = nRT∕V ) über. Dies liegt daran, dass
bei sehr hohen Temperaturen die kinetische Energie
der Moleküle bei weitem die potenzielle Energie der
Wechselwirkungen übersteigt. Außerdem ist das Vo­
lumen eines Gases unter diesen Bedingungen eben­
falls sehr groß, unddieMoleküle verbringenderart viel
Zeit im stoßfreien Flug, dass ihr Eigenvolumen ver­
nachlässigt werden kann.
Der Virialkoeffizient B (siehe Abschn. 1.3.4) kann

ebenfalls mit den van-der-Waals-Konstanten in Ver­
bindung gebracht werden. Zunächst schreiben wir die
ideale Gasgleichung (Gl. (1.5b)) wie folgt um:

p = nRT
V − nb

− a
( n
V

)2
= nRT

V

( V
V − nb

− na
RTV

)
= nRT

V

(
1

1 − nb∕V
− a

RTV∕n

)
= nRT

V

(
1

1 − b∕Vm
− a

RTVm

)
.

Wenn wir nun annehmen, dass b∕Vm ≪ 1 ist und
wir darüber hinaus die Näherung 1∕(1 − x) ≈ 1 + x
berücksichtigen (siehe „Toolkit 6: Reihenentwicklung
und Näherungen“), dann erhalten wir mit x = b∕Vm:

p = nRT
V

(
1 +

b − a∕RT
Vm

)
.

Durch Vergleich dieses Ausdrucks mit der Virialglei­
chung (Gl. (1.28)) erhalten wir

B = b − a
RT

. (1.31)

Der Virialkoeffizient B ist positiv, wenn b > a∕RT
gilt (Abstoßung dominiert), und er ist negativ für b <
a∕RT (Anziehung dominiert), wie bereits zu Beginn
angenommen. Die Boyle-Temperatur (bei der B = 0
ist) stellt sich ein, wenn b = a∕RT ist (abstoßende und
anziehende Wechselwirkungen sind gleich groß). Das
ist der Fall bei TB = a∕Rb.

1.3.6 Die Verflüssigung von Gasen

Ein Gas kondensiert zur Flüssigkeit, wenn es auf eine
Temperatur unterhalb des Siedepunkts, dessen Lage
vom Druck abhängt, abgekühlt wird. Wenn wir bei­
spielsweise Chlorgas bei einem Druck von 1 atm ver­
flüssigen wollen, müssen wir es auf eine Tempera­
tur unterhalb von −34 °C abkühlen. Das kann durch
ein Kältebad aus Trockeneis (festes Kohlendioxid) er­
reicht werden. Da die Temperatur des Kältebads die
Siedetemperatur des Gases unterschreiten muss, ist
dieses einfache Verfahren bei Gasen mit niedrigen
Siedepunkten wie Sauerstoff (−183 °C) oder Stickstoff
(−196 °C) praktisch nicht mehr durchführbar.
Ein alternatives technisches Verfahren beruht auf

derWirkung intermolekularer Kräfte. Aus Abschn. 1.2
wissen wir bereits, dass die quadratisch gemittelte Ge­
schwindigkeit der Moleküle eines Gases proportional
zur Quadratwurzel der Temperatur ist (Gl. (1.20a),
c ∝ T1∕2). Eine Verringerung dieser Geschwindigkeit
hat daher eine Abnahme der Temperatur zur Folge.
Wenn wir die Molekülgeschwindigkeiten so weit er­
niedrigen, dass sich die Teilchen aufgrund der anzie­
henden Wechselwirkungen nicht mehr voneinander
lösen können, geht das Gas in den flüssigen Aggregat­
zustand über.
Um den physikalischen Hintergrund dieses Verfah­

rens besser verstehen zu können, stellen wir uns zu­
nächst einen Ball vor, der in die Luft geworfen wird:
Der Ball wird wegen der Erdanziehung mit zuneh­
menderHöhe langsamer, und seine kinetische Energie
wird in potenzielle Energie umgewandelt. Wir wissen
bereits, dass auch Moleküle einander anziehen. Die­
se Wechselwirkung beruht zwar nicht auf der Gra­
vitationswechselwirkung, aber der Effekt ist derselbe.
Wie der Ball mit zunehmender Entfernung zur Erde
langsamer wird, sollten auch die Geschwindigkeiten
der Moleküle abnehmen, wenn diese sich voneinan­
der entfernen. Wenn wir ein Gas expandieren lassen,
nimmt das Volumen zu, und daher steigt auch der
Abstand der Moleküle untereinander. Wenn wir ver­
hindern, dass bei diesem Vorgang Wärme von außen
zugeführt wird, nimmt die Temperatur des Gases ab.
Wenn dem Gas ein größeres Volumen zur Verfügung
gestellt wird, müssen sich die einzelnen Moleküle von
den anziehenden Kräften ihrer Nachbarmoleküle lö­
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sen, um das gesamte Volumen ausfüllen zu können.
Das erfordert jedoch eine Umwandlung von kineti­
scher in potenzielle Energie und führt somit zu einer
Verlangsamung der Moleküle. Wegen der Abnahme
der mittleren Geschwindigkeit der Moleküle ist das
Gas nun kälter als vor der Expansion.
Technisch realisiert man diesen Vorgang, indem

man ein komprimiertes Gas durch ein „Drosselven­
til“, eine sehr feine Öffnung, strömen lässt. Aufgrund
des Druckunterschieds expandiert das Gas und kühlt
sich dabei ab. Dies wird als Joule-Thomson-Effekt
bezeichnet. Der Effekt wurde zuerst von James Joule
(ihm zu Ehren ist die Einheit der Energie benannt) und
William Thomson (dem späteren Lord Kelvin) beob­
achtet und untersucht. Dieses Verfahren funktioniert
nur für reale Gase, bei denen anziehende intermole­
kulare Wechselwirkungen dominieren. Wenn die Mo­

leküle im Wesentlichen einander abstoßen, wird bei
einer Expansion des Gases potenzielle in kinetische
Energie umgewandelt und die Geschwindigkeiten der
Moleküle nehmen imMittel zu. Daher führt der Joule-
Thomson-Effekt für Gase mit einem Kompressions­
faktor Z > 1 zur Erwärmung, wenn das Gas expan­
diert.
In der technischen Praxis zur Verflüssigung vonGa­

sen lässt man dieses mehrere Expansions- und Kom­
pressionsschritte in einer sogenannten Linde-Kühl­
maschine (siehe Abb. 1.17) durchlaufen. In jedem
Schritt wird das Gas immer weiter abgekühlt, strömt
nun demnoch komprimiertenGas entgegen und kühlt
dieses bereits vor der Expansion weiter ab. Nachmeh­
reren Expansionsschritten hat sich das Gas so weit ab­
gekühlt, dass es zur Flüssigkeit kondensiert.

Toolkit 6: Reihenentwicklung und Näherungen

Es istmöglichundoft äußerst nützlich, eine Funktion als
Reihenentwicklung zu formulieren in der Form

f (x) = c0 + c1x + c2x
2 + …

wobei c0, c1, c2, … konstante Koeffizienten sind. Die
folgenden Reihenwerden in der PhysikalischenChemie
häufig benötigt; während (a) für alle x gilt, sind die Rei-
hen in (b), (c) und (d) nur für |x| < 1 wohldefiniert. Die
hinter dem Rundungszeichen (≈) angegebenen Nähe-
rungen sind nur gültig, wenn x ≪ 1 ist (Abb. T1).

(a) ex = 1 + x + 1
2
x2 + 1

6
x3 − ⋯ ≈ 1 + x

(b) (1 + x)−1 = 1 − x + x2 − ⋯ ≈ 1 − x

(c) ln(1 + x) = x − 1
2
x2 + 1

3
x3 − ⋯ ≈ x

(d) (1 + x)1∕2 = 1 + 1
2
x − 1

8
x2 + ⋯ ≈ 1 + 1

2
x

Alle vier dieser Ausdrücke sind Spezialfälle der allge-
meinen Taylorreihe. Ähnliche Näherungen für weitere
Funktionen kann man über die Vorschrift

f (x) = f (0) +
(df
dx

)
0
x +

(
d2f
dx2

)
0
x2 + …

gewinnen, wobei der tiefgestellte Index 0 bedeutet,
dass die Ableitungen an der Stelle x = 0 gebildet wer-
den sollen.

1 − x 

x x

x x

1 + x
(1 + x)−1

1 − x  + x2
ex

ln(1 + x)

x (1 + x)1/2

1 +   x1
2

(a) (b)

(c) (d)
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Abb. 1.17 Die Funktionsweise einer Linde-Kühlmaschine. Das
komprimierte Gas wird vor der Expansion im Gegenstromver-
fahren abgekühlt, bevor es durch das Drosselventil strömt. Das
bereits expandierte Gas übernimmt die Rolle des Kühlmittels.
Auf diese Weise werden beim Expansionsschritt immer tiefere
Temperaturen erreicht, bis schließlich die Verflüssigung des
Gases eintritt.

Schlüsselkonzepte

1. Das Ausmaß der Abweichungen eines Gases von
idealem Verhalten wird im Kompressionsfaktor
zusammengefasst.

2. Die Virialgleichung ist eine empirische Erweite­
rung des idealen Gasgesetzes, die das Verhalten
realer Gase in einem bestimmten Bereich äußerer
Bedingungen beschreibt.

3. Aus den Isothermen eines realen Gases lassen sich
die Konzepte des Dampfdrucks und des kriti­
schen Verhaltens ableiten.

4. Ein Gas kann alleine durch Erhöhung des Drucks
verflüssigt werden, solange seine Temperatur un­
terhalb oder exakt bei seiner kritischen Tempera­
tur liegt.

5. Die van-der-Waals-Gleichung ist eine theoreti­
sche Zustandsgleichung für realeGase, die von den
beiden van-der-Waals-Konstanten a bzw. b ab­
hängt, die anziehende bzw. abstoßende intermole­
kulare Wechselwirkungen berücksichtigen.

6. Als Joule-Thomson-Effekt bezeichnet man das
Abkühlen eines Gases, wenn es ohne Zufuhr von
Wärme expandiert, nachdem es durch einDrossel­
ventil geströmt ist.

Übungsteil Fokus 1 – Gase

Übungen

Behandeln Sie alle Gase als ideal, sofern nicht aus­
drücklich etwas anderes verlangt ist.

Abschnitt 1.1 – Das ideale Gas

1.1.1 Geben Sie die Drücke (a) 108 kPa in Torr,
(b) 0,975 bar in atm, (c) 22,5 kPa in atm, (d) 770Torr
in Pascal an.

1.1.2 Welchen Druck übt gasförmiger Stickstoff mit
einer Masse von 3,055 g bei 32 °C in einem Gefäß mit
einem Volumen von 3,00 dm3 aus?

1.1.3 Eine Probe gasförmigen Neons mit einer Mas­
se von 425mg nimmt bei 77K ein Volumen von
6,00 dm3 ein. Wie groß ist der Druck des Gases?

1.1.4 Überraschenderweise wirkt Stickstoffmon­
oxid (NO) im menschlichen Körper als Neurotrans­
mitter. Um dieses Phänomen zu untersuchen, wird
Stickstoffmonoxid in einem Gefäß mit einem Volu­
men von 300,0 cm3 aufgefangen. Bei 14,5 °C beträgt
der Druck des Gases 34,5 kPa. Wie groß ist die Stoff­
menge an NO-Molekülen?

1.1.5 In Haushaltsgeräten zur Erzeugung von Spru­
delwasser werden Stahlzylinder eingesetzt, die mit
Kohlendioxid gefüllt sind. Diese Zylinder haben ein
Volumen von 250 cm3. Ein voller Zylinder hat eine
Masse von 1,04 kg, und –wenn er leer ist – eineMasse
von 0,74 kg.Wie groß ist der Druck des Kohlendioxid­
gases bei 20 °C?

1.1.6 Man untersucht die Wirkung hoher Drücke
auf (auchmenschliche) Organismen, um beispielswei­
se mögliche Gefahren des Tiefseetauchens besser ab­
schätzen zu können. Welcher Druck ist notwendig,
um 1,00 dm3 Luft bei 25 °C und 1,00 atm bei gleicher
Temperatur auf ein Volumen von 100 cm3 zu kompri­
mieren?

1.1.7 Behälter, die Gase unter Druck enthalten, sind
gewöhnlich mit einem Warnhinweis ausgestattet, da
sie unbedingt vor hohenTemperaturen geschützt wer­
denmüssen. Eine Sprühdose, deren Treibgas bei 18 °C
einen Druck von 125 kPa ausübt, wird in ein Feuer ge­
worfen. Wie groß ist der Druck des Gases, wenn die
Temperatur der Dose auf 700 °C angestiegen ist?

1.1.8 An Orten, die tief unter dem Meeresspiegel
oder auf der Mondoberfläche liegen, müssen wir den
zur Atmung benötigten Sauerstoff in komprimierter
Form in Sauerstoffflaschenmit uns führen. Berechnen
Sie den Druck von gasförmigem Sauerstoff, der aus­
gehend von einem Volumen von 7,20 dm3 bei 101 kPa
auf ein Volumen von 4,21 dm3 komprimiert wird.

1.1.9 Eine Probe Heliumgas nimmt bei 22,2 °C ein
Volumen von 1,00 dm3 ein. Auf welche Temperatur
muss das Gas abgekühlt werden, wenn das Volumen
auf 100 cm3 verringert werden soll?
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1.1.10 DerAuftrieb einesHeißluftballons beruht da­
rauf, dass sich die Luft in der Ballonhülle beim Er­
wärmen ausdehnt und dadurch ihre Dichte abnimmt.
Auf welche Temperatur, ausgehend von 315K, muss
eine gegebene Luftmenge aufgeheizt werden, damit
das Volumen um 25% zunimmt?

1.1.11 Auf Höhe desMeeresspiegels nimmt eine be­
stimmte Masse Luft bei einemDruck von 104 kPa und
einer Temperatur von 21,1 °C ein Volumen von 2,0m3

ein. Wie groß ist das Volumen der gleichen Luftmas­
se in höheren Regionen der Atmosphäre bei Werten
für Druck und Temperatur von (a) 52 kPa, −5,0 °C und
(b) 880Pa, −52,0 °C?

1.1.12 Die Verschmutzung der Atmosphäre ist ein
Problem, das in den letzten Jahren sehr viel Aufmerk­
samkeit erregt hat. Nun sind aber nicht alle Schad­
stoffe industriellen Ursprungs. Vulkanische Aktivitä­
ten sind eine nicht zu vernachlässigende Quelle für
Luftschadstoffe. Der Vulkan Kilauea auf Hawaii zum
Beispiel emittiert 200 bis 300 t Schwefeldioxidgas pro
Tag (1 t = 1000 kg). Wie groß ist das Volumen des täg­
lich ausgestoßenen Gases, wenn es bei einer Tempera­
tur von 800 °C und einem Druck von 1,0 atm abgege­
ben wird?

1.1.13 Berechnen Sie die Stoffmengenanteile (Mo­
lenbrüche) der Komponenten einer Mischung aus
56 g Benzol (C6H6) und 120 g Methylbenzol (Toluol,
C6H5CH3).

1.1.14 Um die Atmosphäre eines anderen Plane­
ten nachzubilden, wird eine Gasmischung aus 320mg
Methan, 175mg Argon und 225mg Stickstoff herge­
stellt. Bei 300K beträgt der Partialdruck des Stick­
stoffs 15,2 kPa. Berechnen Sie (a) das Volumen und
(b) den Gesamtdruck der Gasmischung.

Abschnitt 1.2 – Die kinetische Gastheorie

1.2.1 Berechnen Sie mithilfe der kinetischen Gas­
theorie die quadratisch gemittelte Geschwindigkeit
von (a) N2-, (b)H2O-Molekülen in der Erdatmosphäre
bei 273K.

1.2.2 Berechnen Sie die mittlere Geschwindigkeit
von (a) Heliumatomen und (b) CH4-Molekülen bei
(i) 79K, (ii) 315K und (iii) 1500K.

1.2.3 Ein Synthesegas (auch „Syngas“ genannt) be­
steht aus einem Gemisch aus Wasserstoff und Koh­
lenmonoxid. Berechnen Sie die relative Rate, ausge­
drückt in Molekülen pro Sekunde, mit der die H2-
undCO-Moleküle aus einemZylinder entweichen, der
eine kleine Öffnung besitzt.

1.2.4 In einem Zylinder befindet sich Gas zum Be­
trieb eines CO2-Lasers, ein Gemisch aus jeweils glei­
chen Anteilen von Kohlendioxid, Stickstoff und He­
lium. Wie groß ist die Masse des durch eine Öff­
nung entweichenden Stickstoffs bzw. Heliums, wenn
im gleichen Zeitraum 1,0 g Kohlendioxid entwichen
ist?

1.2.5 Bei welchem Druck entspricht die mittlere
freie Weglänge von Argonatomen (σ = 0,36 nm2) bei
25 °C dem Durchmesser einer Kugel mit einem Volu­
men von 1,0 dm3?

1.2.6 Für die Untersuchung photochemischer Pro­
zesse in den oberen Schichten der Atmosphäre benö­
tigen wir in der Regel die Stoßzahlen verschiedener
Atome und Moleküle. In einer Höhe von 20 km betra­
gen Temperatur und Druck 217K bzw. 0,050 atm.Wie
groß ist diemittlere freieWeglänge vonN2-Molekülen
(σ = 0,43 nm2) unter diesen Bedingungen? Wie vie­
le Stöße pro Sekunde finden in dieser Höhe zwischen
den N2-Molekülen statt?

1.2.7 Wie oft stößt ein Argonatom (Stoßquer­
schnitt σ = 0,36 nm2) in 1,0 s bei einer Temperatur von
25 °C und einem Druck von (a) 10 bar, (b) 100 kPa und
(c) 1,0 Pa mit anderen Atomen zusammen?

1.2.8 Wie hängt die mittlere freieWeglänge derMo­
leküle von der Temperatur des Gases ab, wenn das
Gasvolumen konstant bleibt?

1.2.9 DieAusbreitung vonAbgasen durch dieAtmo­
sphäre wird im Wesentlichen durch Winde, teilweise
aber auch durch die Diffusion der Moleküle hervor­
gerufen. Die Geschwindigkeit des letzteren Prozesses
hängt davon ab, wie weit sich ein Molekül bewegt, be­
vor es mit einem anderen Molekül zusammenstößt.
Berechnen Sie die mittlere freie Weglänge eines zwei­
atomigen Moleküls mit σ = 0,43 nm2 in Luft bei 25 °C
und (a) 10 bar, (b) 103 kPa und (c) 1,0 Pa.

Abschnitt 1.3 – Reale Gase

1.3.1 Der kritische Punkt von Ammoniakgas, NH3,
liegt bei 111,3 atm, 72,5 cm3 mol−1 und 405,5 K. Be­
rechnen Sie den Kompressionsfaktor am kritischen
Punkt. Was lässt sich aus dem Ergebnis schließen?

1.3.2 In der folgenden Tabelle sind die kritischen
Konstanten für Methan, Ethan und Propan angege­
ben. Berechnen Sie aus diesen Daten die Kompressi­
onsfaktoren am kritischen Punkt für diese drei Gase.
Was können Sie aus den berechneten Werten erken­
nen?
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pk∕atm Vk∕(cm3 mol−1) Tk∕K

Methan, CH4 45,6 98,7 190,6
Ethan, C2H6 48,6 260 562,7
Propan, C3H8 41,9 200 369,8

1.3.3 Berechnen Siemithilfe der Virialgleichung den
Druck, den 1,00mol CH4 bei 273K in einem Vo­
lumen von 1,00 dm3 ausübt. Bei dieser Tempera­
tur besitzt der zweite Virialkoeffizient B den Wert
−53,6 cm3 mol−1. Gehen Sie davon aus, dass die Vi­
rialgleichung nach dem zweiten Term abbricht.

1.3.4 Das Molvolumen von Sauerstoff, O2, beträgt
3,90 dm3 mol−1 bei 10,0 bar und 200 °C. Gehen Sie da­
von aus, dass die Virialgleichung nach dem zweiten
Term abbricht, und berechnen Sie den zweiten Viri­
alkoeffizienten B für Sauerstoff bei dieser Temperatur.

1.3.5 Die Virialgleichung lässt sich in Abhängigkeit
vom Druck auch schreiben als: Z = 1 + B′ p + … Die
kritischen Konstanten für Wasser, H2O, sind pk =
218, 3 atm, Vk = 55,3 cm3 mol−1 und Tk = 647, 4 K.
Gehen Sie davon aus, dass die oben angegebene Form
der Virialgleichung nach dem zweiten Term abbricht,
und berechnen Sie den zweiten Virialkoeffizienten B′

für Wasser bei der kritischen Temperatur.

1.3.6 Berechnen Sie den Druck, den 1,0mol C2H6
ausübt, wenn Sie Ethan (a) als ideales Gas, (b) als
van-der-Waals-Gas betrachten, und zwar jeweils un­
ter den folgenden Bedingungen: (i) bei 273,15K
in 22,414 dm3, (ii) bei 1000K in 100 cm3. Verwen­
den Sie zur Berechnung die Werte aus Tab. 1.5 in
Abschn. 1.3.5.

1.3.7 Wie zuverlässig sind die Werte, die Sie durch
Anwendung der idealen Gasgleichung erhalten im
Vergleich zur Anwendung der van-der-Waals-Glei­
chung? Berechnen Sie hierzu die Differenz der Drü­
cke, die sich aus der van-der-Waals-Gleichung und
der Zustandsgleichung des idealen Gases für 10,00 g
Kohlendioxid in einemGefäßmit einem Volumen von
100 cm3 bei 25,0 °C ergeben.

1.3.8 Ein Gas gehorcht der van-der-Waals-Glei­
chung mit der Konstante a = 0,50m6 Pamol−2. Das
Volumen beträgt 5,00 × 10−4 m3 mol−1 bei 273K und
3,0MPa. Berechnen Sie aus diesen Angaben die van-
der-Waals-Konstante b. Wie groß ist der Kompressi­
onsfaktor dieses Gases bei den angegebenen Werten
für Temperatur und Druck?

1.3.9 Berechnen Sie die Boyle-Temperatur für Koh­
lenstoffdisulfid, CS2, aus den gegebenen van-der-
Waals-Konstanten a = 11,77 dm6 barmol−2, b =
0,076 85 dm3 mol−1.

Verständnisfragen

1.1 Beschreiben Sie, wie die von Boyle, Charles und
Avogadro durchgeführten Experimente zur Formulie­
rung der Zustandsgleichung des idealen Gases führ­
ten.

1.2 Erläutern Sie den Begriff „Partialdruck“ und
beschreiben Sie, warum das Dalton’sche Gesetz ein
Grenzgesetz ist.

1.3 Erklären Siemithilfe der kinetischen Gastheorie,
warum der Anteil leichter Gase, wie H2 und He, in der
Erdatmosphäre gering ist im Vergleich zu schwereren
Gasen wie O2, CO2 und N2.

1.4 Erklären Sie mithilfe einer molekularen Modell­
vorstellung die Temperaturabhängigkeit der Diffusi­
ons- und Effusionsraten von Gasen.

1.5 Erläutern Sie die Abhängigkeit des Kompressi­
onsfaktors von Druck und Temperatur. Beschreiben
Sie, wie man aus dieser Abhängigkeit Informationen
über die intermolekularen Wechselwirkungen in rea­
len Gasen gewinnen kann.

1.6 Welche Bedeutung haben die kritischen Kon­
stanten eines Gases?

1.7 Beschreiben Sie die einzelnen Schritte, die zur
Aufstellung der van-der-Waals-Gleichung führen.

Aufgaben

1.1 Eine Taucherglocke hat an Deck eines Schiffs ei­
nen Luftraum von 3,0m3. Wie groß ist das Volumen
des Luftraums in 50m Wassertiefe, wenn die Was­
sertemperatur mit der Temperatur der Luft auf Höhe
des Meeresspiegels übereinstimmt? Nehmen Sie eine
mittlere Dichte desMeerwassers von 1,025 g cm−3 an.

1.2 Wetterballons werden auch heute noch einge­
setzt, um Informationen über die Atmosphäre und das
Wetter zu erhalten. Im Jahr 1782 ließ Jacques Charles
einen mit Wasserstoff gefüllten Ballon von Paris aus
25 kmweit in die französische Landschaft fliegen.Wie
groß ist die Dichte von Wasserstoff relativ zur Dichte
der Luft bei gleicher Temperatur und gleichemDruck?
Welche Nutzlast kann von einem Ballon mit 10 kg
Wasserstoff transportiertwerden,wenndie Eigenmas­
se des Ballons vernachlässigt wird?

1.3 Ein Wetterballon hat bei 20 °C auf Höhe des
Meeresspiegels einen Radius von 1,5m. Nach Errei­
chendermaximalenHöhe dehnt sich der Ballon auf ei­
nen Radius von 3,5m aus. Welcher Druck herrscht in­
nerhalb des Ballons, wenn die Temperatur −25 °C be­
trägt?
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1.4 Wasser hat bei der Temperatur des Bluts einen
Dampfdruck von 47Torr. Wie groß ist der Partial­
druck der trockenen Luft in der Lunge bei einem Ge­
samtdruck von 760Torr?

1.5 Trockene Luft besteht, bezogen auf die Masse,
zu 75,53% aus Stickstoff, und zu 23,14% aus Sauer­
stoff. Der übrigeMassenanteil setzt sich aus Edelgasen
zusammen, hauptsächlich Argon. Wie groß sind die
Stoffmengenanteile (Molenbrüche) der drei genann­
ten Gase?

1.6 Die Bestimmung der Dichte eines Gases oder
Dampfes gibt in guter Näherung Aufschluss über sei­
ne Molmasse. Die Dichte einer gasförmigen Substanz
in einem Glaskolben wurde bei 330K und 25,2 kPa zu
1,23 g dm−3 bestimmt. Welche Molmasse besitzt das
untersuchte Gas?

1.7 Bei der experimentellen Bestimmung der Mol­
masse eines Gases wurden 250 cm3 der Substanz in ei­
nenGlaskolbenüberführt.DerDruck beträgt 152Torr
bei 298K und die Masse des Gases wurde zu 33,5mg
bestimmt. Welche Molmasse besitzt das untersuchte
Gas?

1.8 Ein Behälter mit einem Volumen von 22,4 dm3

enthält 2,0mol H2 und 1,0mol N2 bei 273,15K. Be­
rechnen Sie (a) die Partialdrücke und (b) den Gesamt­
druck der Gasmischung.

1.9 Ein Glaskolbenmit einem Volumen von 1,0 dm3

enthält 1,0 × 1023 H2-Moleküle. Wenn der Gasdruck
100 kPa beträgt, wie groß ist dann (a) die Tempera­
tur des Gases und (b) die quadratisch gemittelte Ge­
schwindigkeit der Moleküle? (c) Wäre die Temperatur
eine andere, wenn es sich um O2-Moleküle handeln
würde?

1.10 Ein Methanmolekül kann als sphärische Kugel
mit einemRadius von 0,38 nm angesehenwerden.Wie
viele Stöße erleidet jedes einzelne CH4-Molekül, wenn
sich eine Stoffmenge von 0,10mol bei 25 °C in einem
Kolben von 1,0 dm3 Volumen befindet?

1.11 Methanmoleküle, CH4, können als sphärische
Kugeln betrachtet werden, die einen Stoßquerschnitt
von σ = 0,46 nm2 besitzen. Geben Sie eine Näherung
für den Wert der van-der-Waals-Konstante b an, in­
dem Sie das molare Ausschlussvolumen der Methan­
moleküle berechnen.

1.12 Eine Probe von 0,200mol Cl2 (g) befindet sich
in einem Behälter mit 250 cm3 Volumen. Bei einer
Temperatur von 500K übt das Gas einen Druck von
3,06MPa, und bei 1000K von 6,54MPa aus. Berech­
nen Sie die Werte der van-der-Waals-Konstanten a
und b für Chlorgas.

1.13 Die kritischen Konstanten hängen mit den
van-der-Waals-Konstanten über folgende Beziehun­
gen zusammen: pk = a∕(27b2), Vk = 3b und Tk =
8a∕(27Rb). Für Ethan lauten die kritischen Konstan­
ten pk = 48,20 atm, Vk = 148 cm3 mol−1 und Tk =
305,4K. BerechnenSie die van-der-Waals-Konstanten
für Ethangas und geben Sie einen Näherungswert für
den Molekülradius an.

1.14 Durch Messungen bei 273K wurden die
Virialkoeffizienten von Argon bestimmt zu B =
−21,7 cm3 mol−1 und C = 1200 cm6 mol−2. Wie groß
sind die Werte der korrespondierenden Konstanten a
und b in der van-der-Waals-Gleichung?

Projekte

Das Symbol ‡ bedeutet, dass die Anwendung von Dif­
ferenzial- oder Integralrechnung erforderlich ist.

1.1‡ Mithilfe der Differenzial- und Integralrechnung
kann die Maxwell-Boltzmann-Verteilung, ρ(v), de­
taillierter analysiert werden. (a) Die gemittelte Ge­
schwindigkeit von Molekülen nach der Maxwell-
Boltzmann-Verteilung ist gegeben durch das Integral
∫∞
0 vρ(v) dv. Zeigen Sie mithilfe der Maxwell’schen
Geschwindigkeitsverteilung, dass die mittlere Ge­
schwindigkeit derMoleküle in einemGasmit derMol­
masse M bei einer Temperatur T durch den Aus­
druck (8RT∕πM)1∕2 gegeben ist. (Hinweis: Verwen­
den Sie ein Integral der Form ∫∞

0 x2n+1e−ax2 dx =
n!∕2an+1.) (b) Zeigen Sie durch Analyse des Inte­
grals ∫∞

0 v2ρ(v) dv, dass die quadratisch gemittelte Ge­
schwindigkeit derMoleküle in einemGasmit derMol­
masseM bei einer Temperatur T durch den Ausdruck
(3RT∕M)1∕2 gegeben ist. (Hinweis: Verwenden Sie ein
Integral der Form ∫∞

0 x2ne−ax2 dx = (1× 3×⋯× (2n−
1)∕2n+1a2)(π∕a)1∕2.) (c) Die Geschwindigkeit, bei der
dieMaxwell’scheGeschwindigkeitsverteilung denma­
ximalenWert annimmt, ergibt sich aus der Bedingung
dρ(v)∕dv = 0. Leiten Sie einen Ausdruck für die wahr­
scheinlichste Geschwindigkeit der Moleküle in einem
Gas mit der MolmasseM bei einer Temperatur T her.
(d) Berechnen Sie den Anteil aller N2-Moleküle, die
sich bei 500K mit einer Geschwindigkeit zwischen
290 und 300m s−1 bewegen.

1.2 Die kinetische Gastheorie ist immer dann gül­
tig, wenn die Größe der einzelnen Teilchen gegenüber
ihrer mittleren freien Weglänge vernachlässigt wer­
den kann. Das Verhalten der dichten Materie im In­
neren der Sterne mit der kinetischen Gastheorie und
dem Modell des idealen Gases korrekt beschreiben
zu wollen, erscheint daher auf den ersten Blick eine
völlig absurde Idee zu sein. Im Zentrum der Sonne
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zum Beispiel ist die Dichte um den Faktor 150 grö­
ßer als die Dichte des flüssigen Wassers, auf halbem
Weg zur Sonnenoberfläche sind beide Dichten in et­
wa gleich groß. Nun liegt aber die Materie im In­
neren der Sterne als Plasma vor. Dieser besondere
Aggregatzustand zeichnet sich dadurch aus, dass Elek­
tronen und Atomkerne getrennt voneinander vorlie­
gen, es existieren also keine Atome mehr. Da die Son­
ne im Wesentlichen aus Wasserstoff und Helium be­
steht, liegen im Plasma der Sonne Teilchen mit der
Größe von Wasserstoff- und Heliumkernen vor, de­
ren Durchmesser ungefähr 10 fm beträgt. Eine mittle­
re freie Weglänge von 0,1 pm reicht dann aus, um das
Kriterium für die Gültigkeit der kinetischen Gastheo­
rie und der Zustandsgleichung des idealen Gases zu
erfüllen. Wir können also (näherungsweise) die Glei­
chung pV = nRT als Zustandsgleichung zur Beschrei­
bung des Sterneninneren verwenden. (a) Berechnen
Sie den Druck, der auf halbem Weg zum Zentrum
der Sonne herrscht. Wenn wir annehmen, dass das
Innere der Sonne zum allergrößten Teil aus ionisier­
ten Wasserstoffatomen besteht, dann herrscht dort
eine Temperatur von 3,6MK und die Dichte der Son­
ne ist mit 1,20 g cm−3 etwas größer als die Dichte des
flüssigen Wassers. (b) Kombinieren Sie das Ergebnis
aus Teilaufgabe (a) mit dem Ausdruck, den die kine­
tische Gastheorie für den Druck liefert. Zeigen Sie,
dass der Druck p des Plasmas mit der Dichte der ki­
netischen Energie, ρkin = Ekin∕V , der kinetischen En­
ergie der Moleküle in einer Region geteilt durch das
Volumen der betrachteten Region, über die Beziehung
p = 2

3ρkin zusammenhängt. (c) Wie groß ist die Dich­
te der kinetischen Energie auf halbemWeg zum Zen­
trum der Sonne? Vergleichen Sie das Ergebnis mit der
Dichte der (translatorischen) kinetischen Energie in
der Erdatmosphäre an einem warmen Tag (25 °C), die
nur 1,5 × 105 Jm−3 (0,15 J cm−3) beträgt. (d) In et­
wa 5 Milliarden Jahren wird sich unsere Sonne in ei­
nen Roten Riesen verwandeln. Dieser Vorgang ist un­
ter anderem damit verbunden, dass sich die dann im
Wesentlichen aus Helium bestehende Kugel im Zen­
trum der Sonne zusammenzieht und dabei sehr stark
aufheizt. Das führt nicht nur dazu, dass die Fusions­
rate steigt und der Wasserstoff schneller verbraucht
wird, sondern auch zu Fusionsreaktionen, bei denen
schwerere Atomkerne wie zum Beispiel Kohlenstoff­
kerne entstehen. Der äußere Teil der Sonne hinge­

gen bläht sich auf und kühlt ab. Nehmen Sie an, dass
auf halbemWeg zum Zentrum des Roten Riesen eine
Schicht vorliegt, die zum größten Teil aus völlig io­
nisierten Kohlenstoffatomen und Elektronen besteht
und eine Dichte von 1200 kg cm−3 aufweist. Wie groß
ist der Druck an dieser Stelle bei einer Temperatur
von 3500K? (e) Wie groß wäre der Druck bei glei­
cher Temperatur und Dichte, wenn der Rote Riese
aus Teilaufgabe (d) aus neutralen Kohlenstoffatomen
bestünde anstatt aus Kohlenstoffkernen und Elektro­
nen?

1.3 Durch Reihenentwicklung kann eine mathema­
tische Funktion der Form (1 − x)−1 ausgedrückt wer­
den als Potenzreihe 1 + x + x2 + … , solange x <
1 ist. (a) Geben Sie die van-der-Waals-Gleichung in
Form einer Virialentwicklung in Potenzen von 1∕Vm
an. (b) Die Boyle-Temperatur ist definiert als diejenige
Temperatur, bei der der zweite Virialkoeffizient B für
ein van-der-Waals-Gas den Wert null annimmt. Ver­
wenden Sie den in Teilaufgabe (a) abgeleiteten Aus­
druck für B, um einen Ausdruck für die Boyle-Tem­
peratur in Abhängigkeit von den van-der-Waals-Kon­
stanten a und b abzuleiten. (c) Berechnen Sie die
Boyle-Temperatur für Kohlendioxid, CO2, ausgehend
von den Werten a = 3,610 atmdm6 mol−2 und b =
4,29 × 10−2 dm3 mol−1.

1.4‡ Mithilfe der Differenzial- und Integralrechnung
kann eine Beziehung zwischen den kritischen Kon­
stanten und den Parametern a und b eines van-der-
Waals-Gases abgeleitet werden. Der kritische Punkt
eines van-der-Waals-Gases entspricht genau dem Sat­
telpunkt der kritischen Isotherme. An diesem Punkt
gelten somit die Bedingungen dp∕dVm = 0 (die Stei­
gung der Isotherme ist null) und d2 p∕dV 2

m = 0 (die
Krümmung der Isotherme ist null). (a) Berechnen
Sie diese beiden Ableitungen mithilfe von Gl. (1.30a)
und leiten Sie für die kritischen Größen jeweils einen
Ausdruck in Abhängigkeit von den van-der-Waals-
Konstanten her. (b) Zeigen Sie, dass der Kompres­
sionsfaktor am kritischen Punkt den Wert 3

8 an­
nimmt. (c) Für Stickstoffdioxid, NO2, nehmen die
van-der-Waals-Konstanten folgende Werte an: a =
5,354 dm6 barmol−1 und b = 0,044 24 dm3 mol−1. Be­
rechnen Sie die Werte der kritischen Konstanten und
zeigen Sie, dass der Kompressionsfaktor am kritischen
Punkt denWert 3

8 annimmt.


