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KAPITEL 1

Explorative Datenanalyse

Dieses Kapitel erläutert Ihnen den ersten Schritt in jedem datenwissenschaftlichen
Projekt: die Datenexploration.

Die klassische Statistik konzentrierte sich fast ausschließlich auf die Inferenz, einen
manchmal komplexen Satz von Verfahren, um aus kleinen Stichproben Rück-
schlüsse auf eine größere Grundgesamtheit zu ziehen. Im Jahr 1962 forderte John
W. Tukey (https://oreil.ly/LQw6q) (siehe Abbildung 1-1) in seinem bahnbrechen-
den Aufsatz »The Future of Data Analysis« [Tukey-1962] eine Reform der Statistik.
Er schlug eine neue wissenschaftliche Disziplin namens Datenanalyse vor, die die
statistische Inferenz lediglich als eine Komponente enthielt. Tukey knüpfte Kontakte
zu den Ingenieurs- und Informatikgemeinschaften (er prägte die Begriffe Bit, kurz für
Binärziffer, und Software). Seine damaligen Ansätze haben bis heute überraschend
Bestand und bilden einen Teil der Grundlagen der Data Science. Der Fachbereich
der explorativen Datenanalyse wurde mit Tukeys im Jahr 1977 erschienenem und
inzwischen als Klassiker geltendem Buch Exploratory Data Analysis [Tukey-1977]
begründet. Tukey stellte darin einfache Diagramme (z.B. Box-Plots und Streudia-
gramme) vor, die in Kombination mit zusammenfassenden Statistiken (Mittelwert,
Median, Quantile usw.) dabei helfen, ein Bild eines Datensatzes zu zeichnen.

Abbildung 1-1: John Tukey, der bedeutende Statistiker, dessen vor über 50 Jahren entwickelte 
Ideen die Grundlage der Data Science bilden



2 | Kapitel 1: Explorative Datenanalyse

Mit der zunehmenden Verfügbarkeit von Rechenleistung und leistungsfähigen Da-
tenanalyseprogrammen hat sich die explorative Datenanalyse weit über ihren ur-
sprünglichen Rahmen hinaus weiterentwickelt. Die wichtigsten Triebkräfte dieser
Disziplin waren die rasche Entwicklung neuer Technologien, der Zugang zu mehr
und umfangreicheren Daten und der verstärkte Einsatz der quantitativen Analyse
in einer Vielzahl von Disziplinen. David Donoho, Professor für Statistik an der
Stanford University und ehemaliger Student Tukeys, verfasste einen ausgezeichne-
ten Artikel auf der Grundlage seiner Präsentation auf dem Workshop zur Hundert-
jahrfeier von Tukey in Princeton, New Jersey [Donoho-2015]. Donoho führt die
Entwicklung der Data Science auf Tukeys Pionierarbeit in der Datenanalyse zu-
rück.

Strukturierte Datentypen
Es gibt zahlreiche unterschiedliche Datenquellen: Sensormessungen, Ereignisse,
Text, Bilder und Videos. Das Internet der Dinge (engl. Internet of Things (IoT)) pro-
duziert ständig neue Informationsfluten. Ein Großteil dieser Daten liegt unstruktu-
riert vor: Bilder sind nichts anderes als eine Zusammenstellung von Pixeln, wobei
jedes Pixel RGB-Farbinformationen (Rot, Grün, Blau) enthält. Texte sind Folgen
von Wörtern und Nicht-Wortzeichen, die oft in Abschnitte, Unterabschnitte usw.
gegliedert sind. Clickstreams sind Handlungsverläufe eines Nutzers, der mit einer
Anwendung oder einer Webseite interagiert. Tatsächlich besteht eine große He-
rausforderung der Datenwissenschaft darin, diese Flut von Rohdaten in verwert-
bare Informationen zu überführen. Um die in diesem Buch behandelten statisti-
schen Konzepte in Anwendung zu bringen, müssen unstrukturierte Rohdaten
zunächst aufbereitet und in eine strukturierte Form überführt werden. Eine der am
häufigsten vorkommenden Formen strukturierter Daten ist eine Tabelle mit Zeilen
und Spalten – so wie Daten aus einer relationalen Datenbank oder Daten, die für
eine Studie erhoben wurden.

Es gibt zwei grundlegende Arten strukturierter Daten: numerische und kategoriale
Daten. Numerische Daten treten in zwei Formen auf: kontinuierlich, wie z.B. die
Windgeschwindigkeit oder die zeitliche Dauer, und diskret, wie z.B. die Häufigkeit
des Auftretens eines Ereignisses. Kategoriale Daten nehmen nur einen bestimmten
Satz von Werten an, wie z.B. einen TV-Bildschirmtyp (Plasma, LCD, LED usw.)
oder den Namen eines Bundesstaats (Alabama, Alaska usw.). Binäre Daten sind ein
wichtiger Spezialfall kategorialer Daten, die nur einen von zwei möglichen Werten
annehmen, wie z.B. 0 oder 1, ja oder nein oder auch wahr oder falsch. Ein weiterer
nützlicher kategorialer Datentyp sind ordinalskalierte Daten, bei denen die Katego-
rien in einer Reihenfolge geordnet sind; ein Beispiel hierfür ist eine numerische Be-
wertung (1, 2, 3, 4 oder 5).

Warum plagen wir uns mit der Taxonomie der Datentypen herum? Es stellt sich
heraus, dass für die Zwecke der Datenanalyse und der prädiktiven Modellierung
der Datentyp wichtig ist, um die Art der visuellen Darstellung, der Datenanalyse
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oder des statistischen Modells zu bestimmen. Tatsächlich verwenden datenwissen-
schaftliche Softwareprogramme wie R und Python diese Datentypen, um die Re-
chenleistung zu optimieren. Noch wichtiger ist es, dass der Datentyp einer Varia-
blen ausschlaggebend dafür ist, wie das Programm die Berechnungen für diese
Variable handhabt.

Schlüsselbegriffe zu Datentypen
Numerisch

Daten, die auf einer numerischen Skala abgebildet sind.

Kontinuierlich
Daten, die innerhalb eines Intervalls einen beliebigen Wert annehmen
können.

Synonyme
intervallskaliert, Gleitkommazahl, numerisch

Diskret
Daten, die nur ganzzahlige Werte annehmen können, wie z.B. Häufigkei-
ten bzw. Zählungen.

Synonyme
Ganzzahl, Zählwert

Kategorial
Daten, die nur einen bestimmten Satz von Werten annehmen können, die wie-
derum einen Satz von möglichen Kategorien repräsentieren.

Synonyme
Aufzählungstyp, Faktor, faktoriell, nominal

Binär
Ein Spezialfall des kategorialen Datentyps mit nur zwei möglichen Aus-
prägungen, z.B. 0/1, wahr/falsch.

Synonyme
dichotom, logisch, Indikatorvariable, boolesche Variable

Ordinalskaliert
Kategoriale Daten, die eine eindeutige Reihenfolge bzw. Rangordnung ha-
ben.

Synonym
geordneter Faktor

Softwareingenieure und Datenbankprogrammierer fragen sich vielleicht, warum
wir überhaupt den Begriff der kategorialen und ordinalskalierten Daten für unsere
Analyse benötigen. Schließlich sind Kategorien lediglich eine Sammlung von Text-
(oder numerischen) Werten, und die zugrunde liegende Datenbank übernimmt au-
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tomatisch die interne Darstellung. Die explizite Bestimmung von Daten als katego-
riale Daten im Vergleich zu Textdaten bietet jedoch einige Vorteile:

• Die Kenntnis, dass Daten kategorial sind, kann als Signal dienen, durch das
ein Softwareprogramm erkennen kann, wie sich statistische Verfahren wie die
Erstellung eines Diagramms oder die Anpassung eines Modells verhalten sol-
len. Insbesondere ordinalskalierte Daten können als ordered.factor in R ange-
geben werden, wodurch eine benutzerdefinierte Ordnung in Diagrammen, Ta-
bellen und Modellen erhalten bleibt. In Python unterstützt scikit-learn
ordinalskalierte Daten mit der Methode sklearn.preprocessing.OrdinalEncoder.

• Das Speichern und Indizieren kann optimiert werden (wie in einer relationalen
Datenbank).

• Die möglichen Werte, die eine gegebene kategoriale Variable annehmen kann,
werden in dem Softwareprogramm erzwungen (wie bei einer Aufzählung).

Der dritte »Vorteil« kann zu unbeabsichtigtem bzw. unerwartetem Verhalten füh-
ren: Das Standardverhalten von Datenimportfunktionen in R (z.B. read.csv) be-
steht darin, eine Textspalte automatisch in einen factor umzuwandeln. Bei nach-
folgenden Operationen auf dieser Spalte wird davon ausgegangen, dass die einzigen
zulässigen Werte für diese Spalte die ursprünglich importierten sind und die Zu-
weisung eines neuen Textwerts eine Warnung verursacht sowie einen Eintrag mit
dem Wert NA (ein fehlender Wert) erzeugt. Das pandas-Paket in Python nimmt diese
Umwandlung nicht automatisch vor. Sie können jedoch in der Funktion read_csv
eine Spalte explizit als kategorial spezifizieren.

Kernideen
• Daten werden in Softwareprogrammen typischerweise in verschiedene Typen ein-

geteilt.

• Zu den Datentypen gehören numerische (kontinuierlich, diskret) und kategori-
ale (binär, ordinalskaliert).

• Die Datentypisierung dient als Signal für das Softwareprogramm, wie die Daten
zu verarbeiten sind.

Weiterführende Literatur
• Datentypen können verwirrend sein, da sich Typen überschneiden und die

Taxonomie in einem Softwareprogramm von der in einem anderen abweichen
kann. Auf der R-Tutorial-Webseite (https://oreil.ly/2YUoA) können Sie die
Taxonomie in R nachvollziehen. Die pandas-Dokumentation (https://oreil.ly/
UGX-4) beschreibt die verschiedenen Datentypen in Python und wie sie ver-
ändert werden können.
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• Datenbanken sind in ihrer Einteilung der Datentypen detaillierter und berück-
sichtigen Präzisionsniveaus, Datenfelder fester oder variabler Länge und mehr
(siehe den W3Schools-SQL-Leitfaden (https://oreil.ly/cThTM).)

Tabellarische Daten
Der typische Bezugsrahmen für eine Analyse in der Data Science ist ein tabellari-
sches Datenobjekt (engl. Rectangular Data Object), wie eine Tabellenkalkulation
oder eine Datenbanktabelle.

»Tabellarische Daten« ist der allgemeine Begriff für eine zweidimensionale Matrix
mit Zeilen für die Beobachtungen (Fälle) und Spalten für die Merkmale (Varia-
blen); in R und Python wird dies als Data Frame bezeichnet. Die Daten sind zu Be-
ginn nicht immer in dieser Form vorhanden: Unstrukturierte Daten (z.B. Text)
müssen zunächst so verarbeitet und aufbereitet werden, dass sie als eine Reihe von
Merkmalen in tabellarischer Struktur dargestellt werden können (siehe »Struktu-
rierte Datentypen« auf Seite 2). Daten in relationalen Datenbanken müssen für die
meisten Datenanalyse- und Modellierungsaufgaben extrahiert und in eine einzelne
Tabelle überführt werden.

Schlüsselbegriffe zu tabellarischen Daten
Data Frame

Tabellarische Daten (wie ein Tabellenkalkulationsblatt) sind die grundlegende
Datenstruktur für statistische und maschinelle Lernmodelle.

Merkmal
Eine Spalte innerhalb einer Tabelle wird allgemein als Merkmal (engl. Feature)
bezeichnet.

Synonyme
Attribut, Eingabe, Prädiktorvariable, Prädiktor, unabhängige Variable

Ergebnis
Viele datenwissenschaftliche Projekte zielen auf die Vorhersage eines Ergebnis-
ses (engl. Outcome) ab – oft in Form eines Ja-oder-Nein-Ergebnisses (ob bei-
spielsweise in Tabelle 1-1 eine »Auktion umkämpft war oder nicht«). Die
Merkmale werden manchmal verwendet, um das Ergebnis eines statistischen
Versuchs oder einer Studie vorherzusagen..

Synonyme
Ergebnisvariable, abhängige Variable, Antwortvariable, Zielgröße, Aus-
gabe, Responsevariable

Eintrag
Eine Zeile innerhalb einer Tabelle wird allgemein als Eintrag (engl. Record) be-
zeichnet.

Synonyme
Fall, Beispiel, Instanz, Beobachtung
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In Tabelle 1-1 gibt es eine Kombination aus Mess- oder Zähldaten (z.B. Dauer und
Preis) und kategorialen Daten (z.B. Kategorie und Währung). Wie bereits erwähnt,
ist eine besondere Form der kategorialen Variablen eine binäre Variable (ja/nein
oder 0/1), wie in der Spalte ganz rechts in Tabelle 1-1 – eine Indikatorvariable, die
angibt, ob eine Auktion umkämpft war (mehrere Bieter hatte) oder nicht. Diese In-
dikatorvariable ist zufällig auch eine Ergebnisvariable, wenn das Modell vorhersa-
gen soll, ob eine Auktion umkämpft sein wird oder nicht.

Data Frames und Tabellen
Klassische Datenbanktabellen haben eine oder mehrere Spalten, die als Index be-
zeichnet werden und im Wesentlichen eine Zeilennummer darstellen. Dies kann
die Effizienz bestimmter Datenbankabfragen erheblich verbessern. In Pythons pandas-
Bibliothek wird die grundlegende tabellarische Datenstruktur durch ein Data-
Frame-Objekt umgesetzt. Standardmäßig wird automatisch ein ganzzahliger Index
für ein Data-Frame-Objekt basierend auf der Reihenfolge der Zeilen erstellt. In
pandas ist es auch möglich, mehrstufige bzw. hierarchische Indizes festzulegen, um
die Effizienz bestimmter Operationen zu verbessern.

In R ist die grundlegende tabellarische Datenstruktur mittels eines data.frame-Ob-
jekts implementiert. Ein data.frame hat auch einen impliziten ganzzahligen Index,
der auf der Zeilenreihenfolge basiert. Der standardmäßige data.frame in R unter-
stützt keine benutzerdefinierten oder mehrstufigen Indizes. Jedoch kann über das
Argument row.names ein benutzerdefinierter Schlüssel erstellt werden. Um diesem
Problem zu begegnen, werden immer häufiger zwei neuere Pakete eingesetzt:
data.table und dplyr. Beide unterstützen mehrstufige Indizes und bieten erhebli-
che Beschleunigungen bei der Arbeit mit einem data.frame.

Tabelle 1-1: Ein typisches Data-Frame-Format

Kategorie Währung
Verkäufer-
Rating Dauer

Schluss-
tag

Schluss-
preis

Eröffnungs-
preis umkämpft?

Musik/Film/
Spiel

USD 3249 5 Mon 0.01 0.01 0

Musik/Film/
Spiel

USD 3249 5 Mon 0.01 0.01 0

Automobil USD 3115 7 Die 0.01 0.01 0

Automobil USD 3115 7 Die 0.01 0.01 0

Automobil USD 3115 7 Die 0.01 0.01 0

Automobil USD 3115 7 Die 0.01 0.01 0

Automobil USD 3115 7 Die 0.01 0.01 1

Automobil USD 3115 7 Die 0.01 0.01 1



Tabellarische Daten | 7

Unterschiede in der Terminologie
Die Terminologie bei tabellarischen Daten kann verwirrend sein.
Statistiker und Data Scientists verwenden oftmals unterschiedliche
Begriffe für ein und denselben Sachverhalt. Statistiker nutzen in ei-
nem Modell Prädiktorvariablen, um eine Antwortvariable (engl. Res-
ponse) oder eine abhängige Variable vorherzusagen. Ein Datenwis-
senschaftler spricht von Merkmalen (engl. Features), um eine Ziel-
größe (engl. Target) vorherzusagen. Ein Synonym ist besonders
verwirrend: Informatiker verwenden den Begriff Stichprobe (engl.
Sample) für eine einzelne Datenzeile, für einen Statistiker ist eine
Stichprobe hingegen eine Sammlung von Datenzeilen.

Nicht tabellarische Datenstrukturen
Neben tabellarischen Daten gibt es noch andere Datenstrukturen.

Zeitreihendaten umfassen aufeinanderfolgende Messungen derselben Variablen.
Sie sind das Rohmaterial für statistische Prognosemethoden und auch eine zentrale
Komponente der von Geräten – dem Internet der Dinge – erzeugten Daten.

Räumliche Daten- bzw. Geodatenstrukturen, die bei der Kartierung und Standort-
analyse verwendet werden, sind komplexer und vielfältiger als tabellarische Daten-
strukturen. In der Objektdarstellung (engl. Object Representation) stehen ein Ob-
jekt (z.B. ein Haus) und seine räumlichen Koordinaten im Mittelpunkt der Daten.
Die Feldansicht (engl. Field View) hingegen konzentriert sich auf kleine räumliche
Einheiten und den Wert einer relevanten Metrik (z.B. Pixelhelligkeit).

Graphen- (oder Netzwerk-)Datenstrukturen werden verwendet, um physikalische,
soziale oder abstrakte Beziehungen darzustellen. Beispielsweise kann ein Dia-
gramm eines sozialen Netzwerks wie Facebook oder LinkedIn Verbindungen zwi-
schen Menschen im Netzwerk darstellen. Ein Beispiel für ein physisches Netzwerk
sind Vertriebszentren, die durch Straßen miteinander verbunden sind. Diagramm-
strukturen sind für bestimmte Arten von Fragestellungen nützlich, wie z.B. bei der
Netzwerkoptimierung und bei Empfehlungssystemen.

Jeder dieser Datentypen hat seine eigene spezifische Methodologie in der Data
Science. Der Schwerpunkt dieses Buchs liegt auf tabellarische Daten, dem grundle-
genden Baustein der prädiktiven Modellierung.

Graphen in der Statistik
In der Informatik und der Informationstechnologie bezieht sich der
Begriff Graph typischerweise auf die Darstellung von Verbindungen
zwischen Entitäten und auf die zugrunde liegende Datenstruktur. In
der Statistik wird der Begriff Graph verwendet, um sich auf eine Viel-
zahl von Darstellungen und Visualisierungen zu beziehen, nicht nur
von Verbindungen zwischen Entitäten. Zudem bezieht er sich aus-
schließlich auf die Visualisierung und nicht auf die Datenstruktur.
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Kernideen
• Die grundlegende Datenstruktur in der Data Science ist eine rechteckige Matrix,

in der die Zeilen den Beobachtungen entsprechen und die Spalten den Variablen
(Merkmalen).

• Die Terminologie kann verwirrend sein; es gibt eine Vielzahl von Synonymen,
die sich aus den verschiedenen Disziplinen ergeben, die zur Data Science beitra-
gen (Statistik, Informatik und Informationstechnologie).

Weiterführende Literatur
• Dokumentation zu Data Frames in R (https://oreil.ly/NsONR)

• Dokumentation zu Data Frames in Python (https://oreil.ly/oxDKQ)

Lagemaße
Variablen für Mess- oder Zähldaten können Tausende von unterschiedlichen Wer-
ten haben. Ein grundlegender Schritt bei der Erkundung Ihrer Daten ist die Ermitt-
lung eines »typischen Werts« für jedes Merkmal (Variable) – ein sogenanntes Lage-
maß (engl. Estimates of Location): eine Schätzung darüber, wo sich die Mehrheit
der Daten konzentriert (d.h. ihre zentrale Tendenz).

Schlüsselbegriffe zu Lagemaßen
Mittelwert

Die Summe aller Werte dividiert durch die Anzahl der Werte.

Synonyme
arithmetisches Mittel, Durchschnitt

Gewichteter Mittelwert
Die Summe aller Werte, die jeweils mit einem Gewicht bzw. einem Gewich-
tungsfaktor multipliziert werden, geteilt durch die Summe aller Gewichte.

Synonym
gewichteter Durchschnitt

Median
Der Wert, bei dem die Hälfte der Daten oberhalb und die andere Hälfte unter-
halb dieses Werts liegt.

Synonym
50%-Perzentil

Perzentil
Der Wert, bei dem P % der Daten unterhalb dieses Werts liegen.

Synonym
Quantil
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Gewichteter Median
Der Wert, bei dem die Summe der Gewichte der sortierten Daten exakt die
Hälfte beträgt und der die Daten so einteilt, dass sie entweder oberhalb oder
unterhalb diesen Werts liegen.

Getrimmter Mittelwert
Der Mittelwert aller Werte, nachdem eine vorgegebene Anzahl von Ausreißern
entfernt wurde.

Synonym
gestutzter Mittelwert

Robust
Nicht sensibel gegenüber Ausreißern.

Ausreißer
Ein Datenwert, der sich stark von den übrigen Daten unterscheidet.

Synonym
Extremwert

Auf den ersten Blick mag für Sie die Ermittlung einer zusammenfassenden Größe,
die Aufschluss über einen vorliegenden Datensatz gibt, ziemlich trivial erscheinen:
Sie nehmen einfach den Mittelwert, der sich für den Datensatz ergibt. Tatsächlich
ist der Mittelwert zwar leicht zu berechnen und relativ zweckmäßig, aber er ist
nicht immer das beste Maß zur Bestimmung eines Zentralwerts. Aus diesem Grund
haben Statistiker mehrere alternative Schätzer zum Mittelwert entwickelt und be-
fürwortet.

Metriken und Schätzwerte
Statistiker verwenden oft den Begriff Schätzwert für einen aus den
vorliegenden Daten berechneten Wert, um zwischen dem, was wir
aus den Daten ziehen, und der theoretisch wahren oder tatsächlichen
Sachlage zu unterscheiden. Data Scientists und Geschäftsanalysten
sprechen bei einem solchen Wert von einer Metrik. Der Unterschied
spiegelt den Ansatz der Statistik im Vergleich zur Datenwissenschaft
wider: Die Berücksichtigung von Unsicherheit steht im Mittelpunkt
der statistischen Disziplin, währnd in der Datenwissenschaft kon-
krete geschäftliche oder organisatorische Ziele im Fokus stehen. Da-
her kann man sagen, dass Statistiker Schätzungen durchführen und
Data Scientists Messungen vornehmen.

Mittelwert
Das grundlegendste Lagemaß ist der Mittelwert (genauer, das arithmetische Mittel)
oder auch der Durchschnitt. Der Mittelwert entspricht der Summe aller Werte divi-
diert durch die Anzahl von Werten. Betrachten Sie die folgende Zahlenfolge: {3 5
1 2}. Der Mittelwert beträgt (3 + 5 + 1 + 2) / 4 = 11 / 4 = 2,75. Sie werden auf das
Symbol  (ausgesprochen als »x quer«) stoßen, das verwendet wird, um den Mittel-x
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wert einer Stichprobe, die aus einer Grundgesamtheit gezogen wurde, darzustellen.
Die Formel zur Berechnung des Mittelwerts für eine Menge von Werten x1, x2, …,
xn lautet:

N (oder n) bezieht sich auf die Gesamtzahl aller Einträge bzw. Beob-
achtungen. In der Statistik wird es großgeschrieben, wenn es sich auf
eine Grundgesamtheit bezieht, und kleingeschrieben, wenn es auf
eine Stichprobe aus einer Grundgesamtheit abzielt. In der Data
Science ist diese Unterscheidung nicht von Relevanz, weshalb Sie
beide Möglichkeiten in Betracht ziehen können.

Eine Variante des Mittelwerts ist der getrimmte Mittelwert, den Sie berechnen, in-
dem Sie eine feste Anzahl sortierter Werte an jedem Ende weglassen und dann den
Mittelwert der verbleibenden Werte bilden. Für die sortierten Werte x(1), x(2), …,
x(n), wobei x(1) der kleinste Wert und x(n) der größte ist, wird der getrimmte Mittel-
wert mit p kleinsten und größten weggelassenen Werten durch folgende Formel
berechnet:

Durch die Verwendung des getrimmten Mittelwerts wird der Einfluss von Extrem-
werten beseitigt. Zum Beispiel werden bei internationalen Tauchmeisterschaften
die höchste und die niedrigste Punktzahl der fünf Kampfrichter gestrichen, und als
Endpunktzahl wird der Durchschnitt der Punktzahlen der drei verbleibenden
Kampfrichter gewertet (https://oreil.ly/uV4P0). Dies macht es für einen einzelnen
Kampfrichter schwierig, das Ergebnis zu manipulieren, etwa um den Kandidaten
seines Landes zu begünstigen. Getrimmte Mittelwerte sind sehr verbreitet und in
vielen Fällen der Verwendung des gewöhnlichen Mittelwerts vorzuziehen (siehe
»Median und andere robuste Lagemaße« auf Seite 11 für weitere Erläuterungen).

Eine weitere Möglichkeit der Mittelwertbildung ist der gewichtete Mittelwert. Zur
Berechnung multiplizieren Sie jeden Datenwert xi mit einem benutzerdefinierten
Gewicht wi und dividieren die daraus resultierende Summe durch die Summe der
Gewichte. Die Formel für den gewichteten Mittelwert lautet dementsprechend:

Den gewichteten Mittelwert verwendet man hauptsächlich aus zwei Gründen:

• Einige Werte weisen von sich aus eine größere Streuung auf als andere – um
den Einfluss stark streuender Beobachtungen zu verringern, erhalten sie ein
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geringeres Gewicht. Wenn wir z.B. den Mittelwert von mehreren Sensoren bil-
den und einer der Sensoren weniger genau misst, können wir die Daten dieses
Sensors niedriger gewichten.

• Unsere erhobenen Daten repräsentieren die verschiedenen Gruppen, an deren
Messung wir interessiert sind, nicht gleichmäßig. Beispielsweise ist es mög-
lich, aufgrund der Art und Weise, wie ein Onlineversuch durchgeführt wurde,
einen Datensatz zu gewinnen, der nicht alle Gruppen in der Nutzerbasis wahr-
heitsgemäß abbildet. Zur Korrektur können wir den Werten der Gruppen, die
unterrepräsentiert sind, ein höheres Gewicht beimessen.

Median und andere robuste Lagemaße
Der Median entspricht dem mittleren Wert der sortierten Liste eines Datensatzes.
Wenn es eine gerade Anzahl von Datenpunkten gibt, ist der mittlere Wert eigent-
lich nicht im Datensatz enthalten, weshalb der Durchschnitt der beiden Werte, die
die sortierten Daten in eine obere und eine untere Hälfte teilen, verwendet wird.
Verglichen mit dem Mittelwert, bei dem alle Beobachtungen berücksichtigt wer-
den, beruht der Median nur auf den Werten, die sich in der Mitte des sortierten Da-
tensatzes befinden. Dies mag zwar nachteilig erscheinen, da der Mittelwert wesent-
lich empfindlicher in Bezug auf die Datenwerte ist, aber es gibt viele Fälle, in denen
der Median ein besseres Lagemaß darstellt. Angenommen, wir möchten die durch-
schnittlichen Haushaltseinkommen in den Nachbarschaften um den Lake Wa-
shington in Seattle unter die Lupe nehmen. Beim Vergleich der Ortschaft Medina
mit der Ortschaft Windermere würde die Verwendung des Mittelwerts zu sehr un-
terschiedlichen Ergebnissen führen, da Bill Gates in Medina lebt. Wenn wir statt-
dessen den Median verwenden, spielt es keine Rolle, wie reich Bill Gates ist – die
Position der mittleren Beobachtung bleibt unverändert.

Aus den gleichen Gründen wie bei der Verwendung eines gewichteten Mittelwerts
ist es auch möglich, einen gewichteten Median zu ermitteln. Wie beim Median sor-
tieren wir zunächst die Daten, obwohl jeder Datenwert ein zugehöriges Gewicht
hat. Statt der mittleren Zahl ist der gewichtete Median ein Wert, bei dem die
Summe der Gewichte für die untere und die obere »Hälfte« der sortierten Liste
gleich ist. Wie der Median ist auch der gewichtete Median robust gegenüber Aus-
reißern.

Ausreißer

Der Median wird als robustes Lagemaß angesehen, da er nicht von Ausreißern (Ex-
tremfällen) beeinflusst wird, die die Ergebnisse verzerren könnten. Ausreißer sind
Werte, die sehr stark von allen anderen Werten in einem Datensatz abweichen. Die
genaue Definition eines Ausreißers ist etwas subjektiv, obwohl bestimmte Konven-
tionen in verschiedenen zusammenfassenden Statistiken und Diagrammen ver-
wendet werden (siehe »Perzentile und Box-Plots« auf Seite 21). Nur weil ein Daten-
wert einen Ausreißer darstellt, macht es ihn nicht ungültig oder fehlerhaft (wie im
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vorherigen Beispiel mit Bill Gates). Dennoch sind Ausreißer oft das Ergebnis von
Datenfehlern, wie z.B. von Daten, bei denen verschiedene Einheiten vermischt
wurden (Kilometer gegenüber Metern), oder fehlerhafte Messwerte eines Sensors.
Wenn Ausreißer das Ergebnis fehlerhafter bzw. ungültiger Daten sind, wird der
Mittelwert zu einer falschen Einschätzung der Lage führen, wohingegen der Me-
dian immer noch seine Gültigkeit behält. Ausreißer sollten in jedem Fall identifi-
ziert werden und sind in der Regel eine eingehendere Untersuchung wert.

Anomalieerkennung
Im Gegensatz zur gewöhnlichen Datenanalyse, bei der Ausreißer
manchmal informativ sind und manchmal stören, sind bei der Ano-
malieerkennung die Ausreißer von Interesse, und der größere Teil
der Daten dient in erster Linie dazu, den »Normalzustand« zu defi-
nieren, an dem die Anomalien gemessen werden.

Der Median ist nicht das einzige robuste Lagemaß. Tatsächlich wird häufig der ge-
trimmte Mittelwert verwendet, um den Einfluss von Ausreißern zu vermeiden. So
bietet z.B. die Entfernung der unteren und oberen 10% der Daten (eine übliche
Wahl) Schutz vor Ausreißern, es sei denn, der Datensatz ist zu klein. Der ge-
trimmte Mittelwert kann als Kompromiss zwischen dem Median und dem Mittel-
wert gesehen werden: Er ist robust gegenüber Extremwerten in den Daten, verwen-
det jedoch mehr Daten zur Berechnung des Lagemaßes.

Weitere robuste Lagemaße
Statistiker haben eine Vielzahl anderer Lagemaße entwickelt, und
zwar in erster Linie mit dem Ziel, einen Schätzer zu entwickeln, der
robuster und auch effizienter als der Mittelwert ist (d.h. besser in der
Lage, kleine Unterschiede hinsichtlich der Lage zwischen Datensät-
zen zu erkennen). Während diese Methoden für kleine Datensätze
durchaus nützlich sein können, dürften sie bei großen oder selbst bei
mittelgroßen Datensätzen keinen zusätzlichen Nutzen bringen.

Beispiel: Lagemaße für Einwohnerzahlen und Mordraten
Tabelle 1-2 zeigt einen Auszug der ersten paar Zeilen eines Datensatzes, der Infor-
mationen zu den Einwohnerzahlen und Mordraten für jeden US-Bundesstaat ent-
hält (Zensus 2010). Die Einheit für die Mordrate wurde mit »Morde pro 100.000
Personen pro Jahr« gewählt.

Tabelle 1-2: Die ersten Zeilen des data.frame, der Auskunft über die Einwohnerzahlen und 
Mordraten der einzelnen Bundesstaaten gibt

Bundesstaat Einwohnerzahl Mordrate Abkürzung

1 Alabama 4.779.736 5,7 AL

2 Alaska 710.231 5,6 AK

3 Arizona 6.392.017 4,7 AZ
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Berechnen Sie den Mittelwert, den getrimmten Mittelwert und den Median für die
Einwohnerzahlen in R:1

> state <- read.csv('state.csv')
> mean(state[['Population']])
[1] 6162876
> mean(state[['Population']], trim=0.1)
[1] 4783697
> median(state[['Population']])
[1] 4436370

In Python können wir zur Berechnung des Mittelwerts und des Medians die pandas-
Methoden des Data Frame verwenden. Den getrimmten Mittelwert erhalten wir
durch die Funktion trim_mean aus dem Modul scipy.stats:

state = pd.read_csv('state.csv')
state['Population'].mean()
trim_mean(state['Population'], 0.1)
state['Population'].median()

Der Mittelwert ist größer als der getrimmte Mittelwert, der wiederum größer als
der Median ist.

Dies liegt daran, dass der getrimmte Mittelwert die fünf größten und fünf kleinsten
Bundesstaaten ausschließt (trim=0.1 entfernt 10% an beiden Enden der Vertei-
lung). Wenn wir die durchschnittliche Mordrate für das Land berechnen wollen,
müssen wir dazu den gewichteten Mittelwert oder den Median heranziehen, um
die unterschiedlich hohe Anzahl an Einwohnern in den Bundesstaaten zu berück-
sichtigen. Da R in seiner Standardbibliothek keine Funktion für den gewichteten
Median umfasst, müssen wir zu diesem Zweck zunächst das Paket matrixStats in-
stallieren:

> weighted.mean(state[['Murder.Rate']], w=state[['Population']])
[1] 4.445834
> library('matrixStats')
> weightedMedian(state[['Murder.Rate']], w=state[['Population']])
[1] 4.4

4 Arkansas 2.915.918 5,6 AR

5 California 37.253.956 4,4 CA

6 Colorado 5.029.196 2,8 CO

7 Connecticut 3.574.097 2,4 CT

8 Delaware 897.934 5,8 DE

1 Der R- und der Python-Code sind auf das Wesentliche reduziert. Den vollständigen Code sowie die
Datensätze zum Herunterladen finden Sie unter https://github.com/gedeck/practical-statistics-for-data-
scientists.

Tabelle 1-2: Die ersten Zeilen des data.frame, der Auskunft über die Einwohnerzahlen und 
Mordraten der einzelnen Bundesstaaten gibt (Fortsetzung)

Bundesstaat Einwohnerzahl Mordrate Abkürzung
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Bei Python ist die Funktion zur Berechnung des gewichteten Mittelwerts im NumPy-
Paket enthalten. Für den gewichteten Median können wir speziell das Paket
wquantiles (https://oreil.ly/4SIPQ) verwenden:

np.average(state['Murder.Rate'], weights=state['Population'])
wquantiles.median(state['Murder.Rate'], weights=state['Population'])

Im vorliegenden Fall sind der gewichtete Mittelwert und der gewichtete Median in
etwa gleich groß.

Kernideen
• Das wesentliche Lagemaß ist der Mittelwert, der jedoch empfindlich auf Ex-

tremwerte (Ausreißer) reagiert.

• Andere Maße (Median, getrimmter Mittelwert) sind weniger empfindlich gegen-
über Ausreißern und ungewöhnlich verteilten Daten und daher robuster.

Weiterführende Literatur
• In dem Wikipedia-Artikel zur zentralen Tendenz (https://oreil.ly/qUW2i) wer-

den verschiedene Lagemaße ausführlich erläutert.

• John Tukeys Standardwerk aus dem Jahr 1977, Exploratory Data Analysis (Pear-
son), erweist sich nach wie vor als eine beliebte Lektüre.

Streuungsmaße
Die Lage ist nur eine Dimension bei der Zusammenfassung eines Merkmals. Eine
zweite Dimension, die Streuung (engl. Variability) – auch Variabilität oder Disper-
sion genannt –, misst, ob die Datenwerte eng zusammenliegen oder weit gestreut
sind. Die Streuung ist das Herzstück der Statistik: Sie wird gemessen, reduziert, es
kann unterschieden werden zwischen zufälliger und tatsächlicher Streuung, die
verschiedenen Quellen der wahren Streuung können identifiziert und Entschei-
dungen in Gegenwart der Streuung können getroffen werden.

Schlüsselbegriffe zu Streuungsmaßen
Abweichung

Die Differenz zwischen den beobachteten Werten und dem Lagemaß (engl.
Deviation).

Synonyme
Fehler, Residuen



Streuungsmaße | 15

Varianz
Die Summe der quadrierten Abweichungen vom Mittelwert dividiert durch
n – 1, wobei n die Anzahl der Beobachtungen ist.

Synonym
mittlerer quadratischer Fehler

Standardabweichung
Die Quadratwurzel der Varianz.

Mittlere absolute Abweichung
Der Mittelwert der Absolutwerte der Abweichungen vom Mittelwert.

Synonyme
l1-Norm, Manhattan-Norm

Mittlere absolute Abweichung vom Median
Der Median der Absolutwerte der Abweichungen vom Median.

Spannweite
Die Differenz zwischen dem größten und dem kleinsten Wert in einem Daten-
satz (engl. Range).

Ordnungsstatistik
Eine auf den Datenwerten basierende Metrik, sortiert vom kleinsten zum größ-
ten.

Synonym
Rang

Perzentil
Der Wert, bei dem P % der Werte diesen Wert oder weniger und (100-P) %
diesen Wert oder mehr annehmen.

Synonym
Quantil

Interquartilsabstand
Die Differenz zwischen dem 75%-Perzentil und dem 25%-Perzentil.

Synonym
IQR

So wie es verschiedene Möglichkeiten gibt, die Lage zu messen (Mittelwert, Me-
dian usw.), so gibt es auch verschiedene Möglichkeiten, das Ausmaß der Streuung
zu bestimmen.

Standardabweichung und ähnliche Maße
Die meistgenutzten Streuungsmaße basieren auf den Differenzen bzw. Abweichun-
gen zwischen den Lagemaßen und den beobachteten Daten. Für eine gegebene Zah-
lenfolge {1, 4, 4} ist der Mittelwert 3 und der Median 4. Die Abweichungen vom
Mittelwert entsprechen den jeweiligen Differenzen: 1 – 3 = –2, 4 – 3 = 1, 4 – 3 = 1.
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Diese Abweichungen geben uns Aufschluss darüber, wie weit die Daten um den
Zentralwert herum gestreut sind.

Eine Möglichkeit, die Streuung zu messen, besteht darin, einen typischen Wert für
diese Abweichungen zu schätzen. Eine Mittelwertbildung über die Abweichungen
selbst würde uns nicht viel sagen – die negativen Abweichungen würden die posi-
tiven ausgleichen. Tatsächlich ist auch im vorliegenden Beispiel die Summe der Ab-
weichungen vom Mittelwert genau null. Stattdessen können wir den Mittelwert
der Absolutwerte der Abweichungen vom Mittelwert bilden. Im vorhergehenden
Beispiel sind die Absolutwerte der Abweichungen {2 1 1}, und ihr Mittelwert er-
gibt (2 + 1 + 1) / 3 = 1,33. Dieses Maß wird als mittlere absolute Abweichung be-
zeichnet und mit der folgenden Formel ermittelt:

wobei  für den Stichprobenmittelwert steht.

Die bekanntesten Streuungsmaße sind die Varianz und die Standardabweichung,
die auf den quadratischen Abweichungen beruhen. Die Varianz ist der Durch-
schnitt der quadrierten Abweichungen, und die Standardabweichung ist wiederum
die Quadratwurzel der Varianz:

Die Standardabweichung ist viel leichter zu interpretieren als die Varianz, da sie auf
dieselbe Skala wie die Originaldaten bezogen ist. Dennoch mag es mit ihrer kom-
plizierteren und weniger intuitiven Formel merkwürdig erscheinen, dass die Stan-
dardabweichung in der Statistik gegenüber der mittleren absoluten Abweichung
bevorzugt wird. Sie verdankt ihre Vorrangstellung der statistischen Theorie: Ma-
thematisch gesehen, ist es sehr viel vorteilhafter, quadrierte Werte zu verwenden –
und nicht Absolutwerte –, insbesondere in statistischen Modellen.

Die Anzahl der Freiheitsgrade und die Frage, ob n oder n – 1?
In Statistikbüchern finden Sie für gewöhnlich einen Abschnitt, der erklärt, warum
wir n – 1 im Nenner der Formel für die Varianz anstelle von n haben, was uns zum
Konzept der Freiheitsgrade führt. Diese Unterscheidung ist an sich nicht von großer
Bedeutung, da n im Allgemeinen so groß ist, dass es keinen besonderen Unter-
schied macht, ob man durch n oder n – 1 dividiert. Aber falls es Sie interessiert, hier
folgt die Erklärung. Sie basiert auf der Prämisse, dass Sie auf Basis einer Stichprobe
Schätzungen über eine Grundgesamtheit (Population) vornehmen möchten.
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Wenn Sie intuitiverweise n im Nenner der Varianzformel verwenden, unterschät-
zen Sie den wahren Wert der Varianz und der Standardabweichung in der Grund-
gesamtheit. Dies wird als ein verzerrter Schätzer (engl. biased) bezeichnet. Wenn
Sie jedoch n – 1 anstelle von n einsetzen, ermitteln Sie einen unverzerrten (engl. un-
biased) bzw. erwartungstreuen Schätzer der Varianz.

Um vollständig zu erklären, warum die Verwendung von n zu einem verzerrten
Schätzer führt, müssen wir den Begriff der Freiheitsgrade heranziehen, der die An-
zahl der Einschränkungen bei der Berechnung eines Schätzers berücksichtigt. In
diesem Fall gibt es n – 1 Freiheitsgrade, da es eine Randbedingung gibt: Die Stan-
dardabweichung hängt von der Berechnung des Stichprobenmittelwerts ab. In den
meisten Anwendungsfällen müssen sich Data Scientists keine Gedanken über die
Anzahl der Freiheitsgrade machen.

Weder die Varianz noch die Standardabweichung oder die mittlere absolute Ab-
weichung ist gegenüber Ausreißern und Extremwerten robust (siehe »Median und
andere robuste Lagemaße« auf Seite 11 für eine Erläuterung zu den robusten Lage-
maßen). Die Varianz und die Standardabweichung sind besonders empfindlich ge-
genüber Ausreißern, da sie auf den quadrierten Abweichungen beruhen.

Ein robustes Streuungsmaß ist die mittlere absolute Abweichung vom Median (engl.
Median Absolute Deviation from the Median, MAD):

wobei m dem Median entspricht. Wie der Median wird auch die mittlere absolute
Abweichung vom Median nicht durch Extremwerte beeinflusst. Es ist auch mög-
lich, eine getrimmte Standardabweichung analog zum getrimmten Mittelwert zu
berechnen (siehe »Mittelwert« auf Seite 9).

Die Varianz, die Standardabweichung, die mittlere absolute Abwei-
chung und die mittlere absolute Abweichung vom Median sind
keine äquivalenten Streuungsmaße – selbst dann nicht, wenn die
Daten normalverteilt sind. So ist die Standardabweichung immer
größer als die mittlere absolute Abweichung, die ihrerseits größer als
die mittlere absolute Abweichung vom Median ist. Manchmal wird
die mittlere absolute Abweichung vom Median mit einem konstan-
ten Skalierungsfaktor multipliziert, um den Wert für den Fall, dass
die Daten normalverteilt sind, genau so zu skalieren wie die Stan-
dardabweichung. Der üblicherweise verwendete Faktor von 1,4826
bedeutet, dass 50% der Normalverteilung in den Bereich ±MAD fal-
len (siehe z.B. https://oreil.ly/SfDk2).

Streuungsmaße auf Basis von Perzentilen
Ein anderer Ansatz zur Schätzung der Streuung basiert auf der Betrachtung der
Streuung der sortierten Daten. Statistiken, die auf sortierten (d.h. in einer Rang-

x m x m x mN= − − −
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folge geordneten) Daten basieren, werden als Ordnungsstatistiken bezeichnet. Das
grundlegende Maß ist die Spannweite: die Differenz zwischen dem größten und
dem kleinsten Wert. Die Minimal- und Maximalwerte selbst sind zwar durchaus
interessant und bei der Identifizierung von Ausreißern nützlich, aber die Spann-
weite erweist sich als äußerst empfindlich gegenüber Ausreißern und ist als allge-
meines Streuungsmaß nicht sehr hilfreich.

Um der Anfälligkeit gegenüber Ausreißern vorzubeugen, können wir vor der Er-
mittlung der Spannweite Werte an beiden Enden der Daten weglassen. Formal ba-
sieren diese Arten von Schätzern auf Unterschieden zwischen Perzentilen. In einem
Datensatz ist das P%-Perzentil so definiert, dass mindestens P % der Werte diesen
Wert oder weniger und mindestens (100 – P) % der Werte diesen Wert oder mehr
annehmen. Um zum Beispiel das 80%-Perzentil zu ermitteln, müssen Sie die Daten
zunächst sortieren. Dann gehen Sie, beginnend beim kleinsten Wert, 80% der Stre-
cke zum größten Wert weiter. Der Median ist übrigens ein und dasselbe wie das
50%-Perzentil. Ein Perzentil ist im Wesentlichen dasselbe wie ein Quantil, wobei
Quantile durch Bruchzahlen angegeben werden (das 0,8-Quantil ist also dasselbe
wie das 80%-Perzentil).

Ein gebräuchliches Streuungsmaß ist die Differenz zwischen dem 25%-Perzentil
und dem 75%-Perzentil, der sogenannte Interquartilsabstand (engl. Interquartile
Range, IQR). Hier ist ein einfaches Zahlenbeispiel: {3,1,5,3,6,7,2,9}. Wir sortieren
diese Zahlenfolge, um {1,2,3,3,5,6,7,9} zu erhalten. Das 25%-Perzentil liegt bei
2,5 und das 75%-Perzentil bei 6,5, sodass der Interquartilsabstand 6,5 – 2,5 = 4 be-
trägt. Die Softwareprogramme können leicht unterschiedliche Ansätze haben, die
dann unterschiedliche Ergebnisse hervorbringen (siehe folgenden Hinweis); in der
Regel fallen diese Unterschiede jedoch gering aus.

Bei sehr großen Datensätzen kann die Berechnung der genauen Perzentile rechne-
risch sehr aufwendig sein, da dazu alle Datenwerte sortiert werden müssen. Ma-
schinelle Lern- und Statistikprogramme verwenden spezielle Algorithmen, wie
[Zhang-Wang-2007], um einen Näherungswert für ein Perzentil zu erhalten, der
sehr schnell berechnet werden kann und eine gewisse Genauigkeit gewährleistet.

Perzentile: Genaue Definition
Wenn wir eine gerade Anzahl an Werten haben (n ist gerade), dann
ist das Perzentil im Sinne der vorhergehenden Definition mehrdeu-
tig. Tatsächlich könnten wir jeden Wert zwischen der Ordnungssta-
tistik x(j) und x(j + 1) nehmen, wobei j Folgendes erfüllt:

In formaler Hinsicht ist das Perzentil ein gewichteter Durchschnitt:

für ein gegebenes Gewicht w zwischen 0 und 1. In den verschiede-
nen verfügbaren Statistikprogrammen gibt es leicht unterschiedliche

j
n

P j
n

≤ < +

P w x wxj j= − + +
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Ansätze für die Auswahl von w. Tatsächlich bietet die R-Funktion
quantile neun verschiedene Alternativen zur Berechnung des Quan-
tils. Von kleinen Datensätzen abgesehen, brauchen Sie sich in der
Regel keine Gedanken darüber zu machen, wie ein Perzentil genau
berechnet wird. In Python unterstützt das numpy.quantile fünf An-
sätze, wobei die lineare Interpolation voreingestellt ist.

Beispiel: Streuungsmaße für die Einwohnerzahlen der 
Bundesstaaten in den USA
Tabelle 1-3 (Tabelle 1-2 wird der Einfachheit halber erneut dargestellt) zeigt die
ersten paar Zeilen im Datensatz, in dem die Einwohnerzahlen und Mordraten für
jeden US-Bundesstaat enthalten sind.

Unter Verwendung der in R integrierten Funktionen für die Standardabweichung,
den Interquartilsabstand (IQR) und die mittlere absolute Abweichung vom Me-
dian können wir Streuungsmaße für die Einwohnerstatistiken der Bundesstaaten
berechnen:

> sd(state[['Population']])
[1] 6848235
> IQR(state[['Population']])
[1] 4847308
> mad(state[['Population']])
[1] 3849870

Für ein Data-Frame-Objekt stehen uns in der pandas-Bibliothek verschiedene Metho-
den zur Berechnung der Standardabweichung und der Quantile zur Verfügung.
Nach Ermittlung der Quantilswerte können wir den IQR berechnen. Für die robuste
mittlere absolute Abweichung vom Median verwenden wir die Funktion robust. 

scale.mad aus dem statsmodels-Paket:

Tabelle 1-3: Die ersten Zeilen des data.frame mit den Einwohnerzahlen und Mordraten nach 
Bundesstaaten

Bundesstaat Einwohnerzahl Mordrate Abkürzung

1 Alabama 4.779.736 5,7 AL

2 Alaska 710.231 5,6 AK

3 Arizona 6.392.017 4,7 AZ

4 Arkansas 2.915.918 5,6 AR

5 California 37.253.956 4,4 CA

6 Colorado 5.029.196 2,8 CO

7 Connecticut 3.574.097 2,4 CT

8 Delaware 897.934 5,8 DE
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state['Population'].std()
state['Population'].quantile(0.75) - state['Population'].quantile(0.25)
robust.scale.mad(state['Population'])

Die Standardabweichung ist fast doppelt so groß wie die MAD (in R wird die Ska-
lierung der mittleren absoluten Abweichung vom Median standardmäßig so ange-
passt, dass der Mittelwert die gleiche Skalierung besitzt). Dies ist nicht weiter ver-
wunderlich, da die Standardabweichung gegenüber Ausreißern sensibel ist.

Kernideen
• Die Varianz und die Standardabweichung sind die am weitesten verbreiteten

und routinemäßig berichteten Streuungsmaße.

• Beide sind empfindlich gegenüber Ausreißern.

• Zu den robusteren Maßen gehören die mittlere absolute Abweichung, die mitt-
lere absolute Abweichung vom Median und Perzentile (Quantile).

Weiterführende Literatur
• David Lanes Online-Statistik-Ratgeber hat einen Abschnitt über Perzentile 

(https://oreil.ly/o2fBI).

• Kevin Davenport hat einen nützlichen Beitrag auf R-Bloggers (https://oreil.ly/
E7zcG) über Abweichungen vom Median und ihre robusten Eigenschaften
verfasst.

Exploration der Datenverteilung
Alle von uns behandelten Maße fassen die Daten in einer einzigen Zahl zusammen,
um die Lage oder die Streuung der Daten zu beschreiben. Es ist auch wertvoll, zu
untersuchen, wie die komplette Verteilung der Daten aussieht.

Schlüsselbegriffe zur Exploration von Verteilungen
Box-Plot

Ein von Tukey eingeführtes Diagramm zur schnellen Visualisierung der Daten-
verteilung.

Synonyme
Box-Whisker-Plot, Kastengrafik

Häufigkeitstabelle
Eine Übersicht über die Anzahl der numerischen Werte, die in eine Menge von
Intervallen (Klassen, engl. Bins) fallen.
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Histogramm
Ein Diagramm der Häufigkeitstabelle mit den Intervallen auf der x-Achse und
der Anzahl (oder dem relativen Anteil) auf der y-Achse. Balkendiagramme sind
zwar ähnlich, sollten aber nicht mit Histogrammen verwechselt werden (siehe
»Binäre und kategoriale Daten untersuchen« auf Seite 28 für eine Erläuterung
des Unterschieds).

Dichtediagramm
Eine geglättete Version des Histogramms, oft basierend auf einer Kerndichte-
schätzung (engl. Kernel Density Estimate).

Perzentile und Box-Plots
In »Streuungsmaße auf Basis von Perzentilen« auf Seite 17 sind wir der Frage nach-
gegangen, wie Perzentile zur Messung der Streuung der Daten verwendet werden
können. Perzentile sind auch nützlich, um die gesamte Verteilung zusammenfas-
send darzustellen. Es ist üblich, die Quartile (25%-, 50%- und 75%-Perzentile)
und die Dezile (10%-, 20%-, ..., 90%-Perzentile) anzugeben. Perzentile sind be-
sonders aussagekräftig, wenn man die Enden bzw. Ränder (die äußeren Bereiche)
der Verteilung zusammenzufassend darstellen möchte. In der breiten Öffentlich-
keit ist in diesem Zusammenhang oft von der Redewendung »das eine Prozent« die
Rede, die genutzt wird, um Reiche im obersten 99%-Perzentil der Vermögens-
bzw. Einkommensverteilung zu charakterisieren.

Tabelle 1-4 stellt einige Perzentile der Mordraten in den Bundesstaaten dar. In R
können wir uns die Werte mithilfe der Funktion quantile ausgeben lassen:

quantile(state[['Murder.Rate']], p=c(.05, .25, .5, .75, .95))
5% 25% 50% 75% 95%

1.600 2.425 4.000 5.550 6.510

In Python können Sie für einen Data Frame die pandas-Methode quantile nutzen,
um sich die Perzentile ausgeben zu lassen:

state['Murder.Rate'].quantile([0.05, 0.25, 0.5, 0.75, 0.95])

Der Median liegt bei vier Morden pro 100.000 Einwohner. In den Daten gibt je-
doch eine beträchtliche Streuung: Das 5%-Perzentil beträgt nur 1,6 und das 95%-
Perzentil 6,51.

Die von Tukey [Tukey-1977] eingeführten Box-Plots stützen sich auf Perzentile und
bieten eine rasche Möglichkeit, die Verteilung Ihrer Daten zu visualisieren. Abbil-

Tabelle 1-4: Perzentile der Mordraten in den Bundesstaaten

5 % 25 % 50% 75% 95 %

1,60 2,42 4,00 5,55 6,51
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dung 1-2 zeigt einen in R erstellten Box-Plot für die Einwohnerzahlen der Bundes-
staaten:

boxplot(state[['Population']]/1000000, ylab='Einwohnerzahl (in Millionen)')

Die pandas-Bibliothek bietet eine Reihe von grundlegenden informativen Diagram-
men, die für Data Frames genutzt werden können; darunter auch Box-Plots:

ax = (state['Population']/1_000_000).plot.box()
ax.set_ylabel('Einwohnerzahl (in Millionen)')

Abbildung 1-2: Box-Plot für die Einwohnerzahlen der Bundesstaaten

Bei diesem Box-Plot können wir auf einen Blick erkennen, dass die mittlere Ein-
wohnerzahl der Bundesstaaten etwa fünf Millionen beträgt (Median), die Einwoh-
nerzahl für die Hälfte der Staaten zwischen etwa zwei und sieben Millionen liegt
und dass es einige bevölkerungsreiche Ausreißer gibt. Der obere und der untere
Rand des Rechtecks (Box) kennzeichnen jeweils das 75%- bzw. 25%-Perzentil.
Der Median wird durch die fett gehaltene horizontale Linie in der Box angezeigt.
Die beiden vertikalen gestrichelten Linien, die als Whisker oder auch Antennen be-
zeichnet werden, erstrecken sich über den oberen und unteren Rand der Box, um
den Bereich, in dem der überwiegende Teil der Daten liegt, zu kennzeichnen. Es
gibt zahlreiche Varianten von Box-Plots (siehe z.B. die Dokumentation der R-
Funktion boxplot [R-base-2015]). Standardmäßig verlängert die R-Funktion die
Whisker bis zu dem Datenpunkt, der am weitesten über die Box hinausgeht – je-
denfalls immer dann, wenn dieser Wert nicht mehr als das 1,5-Fache des IQR be-
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trägt. Die matplotlib-Bibliothek verwendet die gleiche Implementierung. In ande-
ren Softwareprogrammen kann eine abweichende Regel angewandt werden.

Alle Datenpunkte außerhalb der Whisker werden als einzelne Punkte oder Kreise
dargestellt (die in der Regel als Ausreißer angesehen werden).

Häufigkeitstabellen und Histogramme
Eine Häufigkeitstabelle teilt den Wertebereich einer Variablen bzw. eines Merk-
mals in gleich große Intervalle auf und gibt uns Auskunft darüber, wie viele Werte
jeweils in jedes Intervall fallen. Tabelle 1-5 zeigt Ihnen eine in R erstellte Häufig-
keitstabelle für die Einwohnerzahlen der Bundesstaaten:

breaks <- seq(from=min(state[['Population']]),
to=max(state[['Population']]), length=11)

pop_freq <- cut(state[['Population']], breaks=breaks,
right=TRUE, include.lowest=TRUE)

table(pop_freq)

Die Funktion pandas.cut erzeugt eine Zahlenfolge (Series-Objekt), die die Werte
auf die einzelnen Intervalle abbildet. Mit der Methode value_counts erhalten wir
die Häufigkeitstabelle:

binnedPopulation = pd.cut(state['Population'], 10)
binnedPopulation.value_counts()

Der Bundesstaat mit der geringsten Einwohnerzahl ist Wyoming mit 563.626 Men-
schen, und der bevölkerungsreichste ist Kalifornien mit 37.253.956 Einwohnern.
Daraus ergibt sich ein Wertebereich von 37.253.956 – 563.626 = 36.690.330, den
wir in gleich große Klassen – sagen wir 10 – aufteilen müssen. Bei 10 gleich großen
Klassen hat jede Klasse eine Breite von 3.669.033, sodass das erste Intervall von

Tabelle 1-5: Eine Häufigkeitstabelle für die Einwohnerzahlen der Bundesstaaten

Intervallnummer Intervall Häufigkeit Bundesstaaten

1 563.626–4.232.658 24 WY,VT,ND,AK,SD,DE,MT,RI,NH,ME,HI,ID,NE,WV,NM,N
V,UT,KS,AR,MS,IA,CT,OK,OR

2 4.232.659–7.901.691 14 KY,LA,SC,AL,CO,MN,WI,MD,MO,TN,AZ,IN,MA,WA

3 7.901.692–11.570.724 6 VA,NJ,NC,GA,MI,OH

4 11.570.725–15.239.757 2 PA,IL

5 15.239.758–18.908.790 1 FL

6 18.908.791–22.577.823 1 NY

7 22.577.824–26.246.856 1 TX

8 26.246.857–29.915.889 0

9 29.915.890–33.584.922 0

10 33.584.923–37.253.956 1 CA
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563.626 bis 4.232.658 reicht. Im Gegensatz dazu liegt in der obersten Klasse für
das Intervall 33.584.923 bis 37.253.956 Einwohnern nur ein einziger Bundesstaat:
Kalifornien. Die beiden nächstkleineren Klassen sind unbesetzt, bis als Nächstes
der Bundesstaat Texas erreicht wird. Es ist wichtig, die leeren Klassen mit einzube-
ziehen; die Tatsache, dass sich in diesen Intervallen keine Werte befinden, ist eine
nützliche Information. Es kann auch hilfreich sein, mit verschiedenen Klassenbrei-
ten bzw. Intervallgrößen zu experimentieren. Wenn sie zu groß sind, treten wich-
tige Merkmale der Verteilung gegebenenfalls nicht mehr sichtbar hervor. Werden
sie zu klein gewählt, ist das Ergebnis zu feingliedrig, und die Fähigkeit, ein adäqua-
tes Gesamtbild zu liefern, geht verloren.

Sowohl Häufigkeitstabellen als auch Perzentile fassen die Daten
durch die Einteilung in Klassen bzw. Intervalle übersichtlich zusam-
men. Im Allgemeinen haben Quartile und Dezile in jeder Klasse die
gleiche Anzahl an Beobachtungen (Klassen mit gleicher Anzahl –
equal-count bins), aber die Klassenbreite ist für gewöhnlich unter-
schiedlich. Bei der Häufigkeitstabelle umfassen die Klassen hinge-
gen eine unterschiedliche Anzahl an Beobachtungen, wohingegen
die Klassenbreite identisch ist  (gleich breite Klassen – equal-size bins).

Ein Histogramm bietet die Möglichkeit, eine Häufigkeitstabelle zu visualisieren.
Dabei werden die Klassen auf der x-Achse abgetragen und die Anzahl der Beobach-
tungen bzw. Häufigkeiten auf der y-Achse. In Abbildung 1-3 erstreckt sich die bei
zehn Millionen (1e+07) Einwohnern in der Mitte befindliche Klasse von ungefähr
acht bis zwölf Millionen Einwohnern und umfasst insgesamt sechs Beobachtun-
gen. Um ein Histogramm in R zu erstellen, das dem in Tabelle 1-5 entspricht, müs-
sen Sie lediglich die Funktion hist mit dem Argument breaks verwenden:

hist(state[['Population']], breaks=breaks)

Die pandas-Bibliothek unterstützt die Erstellung von Histogrammen für Data-
Frame-Objekte mit der Methode DataFrame.plot.hist. Mit dem Schlüsselwortar-
gument bins können Sie die Anzahl der Klassen bestimmen. Die verfügbaren plot-
Methoden geben jeweils ein Objekt zurück, das die Koordinaten in Bezug auf die
Achsen bereithält und eine weitere Feinabstimmung des Diagramms mithilfe der
matplotlib-Bibliothek ermöglicht:

ax = (state['Population'] / 1_000_000).plot.hist(figsize=(4, 4))
ax.set_xlabel('Einwohnerzahl (in Millionen)')

Das Histogramm wird in Abbildung 1-3 gezeigt. Im Allgemeinen werden Histo-
gramme so erstellt:

• Auch unbesetzte Klassen werden in die Darstellung mit einbezogen.

• Die Klassen sind gleich breit.

• Die Wahl der Anzahl der Klassen (oder, äquivalent, der Klassenbreite) ist dem
Anwender überlassen.


