KAPITEL 1
Explorative Datenanalyse

Dieses Kapitel erliutert Thnen den ersten Schritt in jedem datenwissenschaftlichen
Projekt: die Datenexploration.

Die klassische Statistik konzentrierte sich fast ausschlieRlich auf die Inferenz, einen
manchmal komplexen Satz von Verfahren, um aus kleinen Stichproben Riick-
schliisse auf eine grofere Grundgesamtheit zu ziehen. Im Jahr 1962 forderte John
W. Tukey (https://oreil.ly/LQw6q) (siehe Abbildung 1-1) in seinem bahnbrechen-
den Aufsatz »The Future of Data Analysis« [Tukey-1962] eine Reform der Statistik.
Er schlug eine neue wissenschaftliche Disziplin namens Datenanalyse vor, die die
statistische Inferenz lediglich als eine Komponente enthielt. Tukey kniipfte Kontakte
zu den Ingenieurs- und Informatikgemeinschaften (er prigte die Begriffe Bit, kurz fiir
Binirziffer, und Software). Seine damaligen Ansitze haben bis heute tiberraschend
Bestand und bilden einen Teil der Grundlagen der Data Science. Der Fachbereich
der explorativen Datenanalyse wurde mit Tukeys im Jahr 1977 erschienenem und
inzwischen als Klassiker geltendem Buch Exploratory Data Analysis [Tukey-1977]
begriindet. Tukey stellte darin einfache Diagramme (z.B. Box-Plots und Streudia-
gramme) vor, die in Kombination mit zusammenfassenden Statistiken (Mittelwert,
Median, Quantile usw.) dabei helfen, ein Bild eines Datensatzes zu zeichnen.

Abbildung 1-1: John Tukey, der bedeutende Statistiker, dessen vor iiber 50 Jahren entwickelte
Ideen die Grundlage der Data Science bilden




Mit der zunehmenden Verfiigbarkeit von Rechenleistung und leistungsfihigen Da-
tenanalyseprogrammen hat sich die explorative Datenanalyse weit tiber ihren ur-
spriinglichen Rahmen hinaus weiterentwickelt. Die wichtigsten Triebkrifte dieser
Disziplin waren die rasche Entwicklung neuer Technologien, der Zugang zu mehr
und umfangreicheren Daten und der verstirkte Einsatz der quantitativen Analyse
in einer Vielzahl von Disziplinen. David Donoho, Professor fiir Statistik an der
Stanford University und ehemaliger Student Tukeys, verfasste einen ausgezeichne-
ten Artikel auf der Grundlage seiner Priasentation auf dem Workshop zur Hundert-
jahrfeier von Tukey in Princeton, New Jersey [Donoho-2015]. Donoho fiihrt die
Entwicklung der Data Science auf Tukeys Pionierarbeit in der Datenanalyse zu-
riick.

Strukturierte Datentypen

Es gibt zahlreiche unterschiedliche Datenquellen: Sensormessungen, Ereignisse,
Text, Bilder und Videos. Das Internet der Dinge (engl. Internet of Things (I0T)) pro-
duziert stindig neue Informationsfluten. Ein GroRteil dieser Daten liegt unstruktu-
riert vor: Bilder sind nichts anderes als eine Zusammenstellung von Pixeln, wobei
jedes Pixel RGB-Farbinformationen (Rot, Griin, Blau) enthilt. Texte sind Folgen
von Wortern und Nicht-Wortzeichen, die oft in Abschnitte, Unterabschnitte usw.
gegliedert sind. Clickstreams sind Handlungsverldufe eines Nutzers, der mit einer
Anwendung oder einer Webseite interagiert. Tatsdchlich besteht eine grofRe He-
rausforderung der Datenwissenschaft darin, diese Flut von Rohdaten in verwert-
bare Informationen zu iiberfithren. Um die in diesem Buch behandelten statisti-
schen Konzepte in Anwendung zu bringen, miissen unstrukturierte Rohdaten
zuniichst aufbereitet und in eine strukturierte Form tiberfithrt werden. Eine der am
hiufigsten vorkommenden Formen strukturierter Daten ist eine Tabelle mit Zeilen
und Spalten — so wie Daten aus einer relationalen Datenbank oder Daten, die fiir
eine Studie erhoben wurden.

Es gibt zwei grundlegende Arten strukturierter Daten: numerische und kategoriale
Daten. Numerische Daten treten in zwei Formen auf: kontinuierlich, wie z.B. die
Windgeschwindigkeit oder die zeitliche Dauer, und diskret, wie z.B. die Hiufigkeit
des Auftretens eines Ereignisses. Kategoriale Daten nehmen nur einen bestimmten
Satz von Werten an, wie z.B. einen TV-Bildschirmtyp (Plasma, LCD, LED usw.)
oder den Namen eines Bundesstaats (Alabama, Alaska usw.). Bindre Daten sind ein
wichtiger Spezialfall kategorialer Daten, die nur einen von zwei moglichen Werten
annehmen, wie z.B. 0 oder 1, ja oder nein oder auch wahr oder falsch. Ein weiterer
niitzlicher kategorialer Datentyp sind ordinalskalierte Daten, bei denen die Katego-
rien in einer Reihenfolge geordnet sind; ein Beispiel hierfiir ist eine numerische Be-
wertung (1, 2, 3, 4 oder 5).

Warum plagen wir uns mit der Taxonomie der Datentypen herum? Es stellt sich
heraus, dass fiir die Zwecke der Datenanalyse und der pradiktiven Modellierung
der Datentyp wichtig ist, um die Art der visuellen Darstellung, der Datenanalyse
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oder des statistischen Modells zu bestimmen. Tatsichlich verwenden datenwissen-
schaftliche Softwareprogramme wie R und Python diese Datentypen, um die Re-
chenleistung zu optimieren. Noch wichtiger ist es, dass der Datentyp einer Varia-
blen ausschlaggebend dafiir ist, wie das Programm die Berechnungen fiir diese

Variable handhabt.

Schliisselbegriffe zu Datentypen

Numerisch
Daten, die auf einer numerischen Skala abgebildet sind.

Kontinuierlich
Daten, die innerhalb eines Intervalls einen beliebigen Wert annehmen
konnen.
Synonyme
intervallskaliert, Gleitkommazahl, numerisch
Diskret
Daten, die nur ganzzahlige Werte annehmen konnen, wie z. B. Hiufigkei-
ten bzw. Zihlungen.
Synonyme
Ganzzahl, Zihlwert
Kategorial
Daten, die nur einen bestimmten Satz von Werten annehmen kénnen, die wie-
derum einen Satz von moglichen Kategorien reprisentieren.
Synonyme
Aufzihlungstyp, Faktor, faktoriell, nominal
Bindgr
Ein Spezialfall des kategorialen Datentyps mit nur zwei moglichen Aus-
pragungen, z.B. 0/1, wahr/falsch.
Synonyme
dichotom, logisch, Indikatorvariable, boolesche Variable
Ordinalskaliert
Kategoriale Daten, die eine eindeutige Reihenfolge bzw. Rangordnung ha-
ben.
Synonym
geordneter Faktor

Softwareingenieure und Datenbankprogrammierer fragen sich vielleicht, warum
wir iberhaupt den Begriff der kategorialen und ordinalskalierten Daten fiir unsere
Analyse benotigen. Schliefllich sind Kategorien lediglich eine Sammlung von Text-
(oder numerischen) Werten, und die zugrunde liegende Datenbank tibernimmt au-
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tomatisch die interne Darstellung. Die explizite Bestimmung von Daten als katego-
riale Daten im Vergleich zu Textdaten bietet jedoch einige Vorteile:

* Die Kenntnis, dass Daten kategorial sind, kann als Signal dienen, durch das
ein Softwareprogramm erkennen kann, wie sich statistische Verfahren wie die
Erstellung eines Diagramms oder die Anpassung eines Modells verhalten sol-
len. Insbesondere ordinalskalierte Daten kénnen als ordered. factor in R ange-
geben werden, wodurch eine benutzerdefinierte Ordnung in Diagrammen, Ta-
bellen und Modellen erhalten bleibt. In Python unterstiitzt scikit-learn
ordinalskalierte Daten mit der Methode sklearn.preprocessing.OrdinalEncoder.

* Das Speichern und Indizieren kann optimiert werden (wie in einer relationalen
Datenbank).

* Die moglichen Werte, die eine gegebene kategoriale Variable annehmen kann,
werden in dem Softwareprogramm erzwungen (wie bei einer Aufzihlung).

Der dritte »Vorteil« kann zu unbeabsichtigtem bzw. unerwartetem Verhalten fiith-
ren: Das Standardverhalten von Datenimportfunktionen in R (z.B. read.csv) be-
steht darin, eine Textspalte automatisch in einen factor umzuwandeln. Bei nach-
folgenden Operationen auf dieser Spalte wird davon ausgegangen, dass die einzigen
zulidssigen Werte fiir diese Spalte die urspriinglich importierten sind und die Zu-
weisung eines neuen Textwerts eine Warnung verursacht sowie einen Eintrag mit
dem Wert NA (ein fehlender Wert) erzeugt. Das pandas-Paket in Python nimmt diese
Umwandlung nicht automatisch vor. Sie kénnen jedoch in der Funktion read csv
eine Spalte explizit als kategorial spezifizieren.

Kernideen
* Daten werden in Softwareprogrammen typischerweise in verschiedene Typen ein-
geteilt.
* Zu den Datentypen gehoren numerische (kontinuierlich, diskret) und kategori-
ale (binir, ordinalskaliert).

* Die Datentypisierung dient als Signal fiir das Softwareprogramm, wie die Daten
zu verarbeiten sind.

Weiterfiihrende Literatur

* Datentypen konnen verwirrend sein, da sich Typen tiberschneiden und die
Taxonomie in einem Softwareprogramm von der in einem anderen abweichen
kann. Auf der R-Tutorial-Webseite (https://oreil.ly/2YUoA) konnen Sie die
Taxonomie in R nachvollziehen. Die pandas-Dokumentation (https://oreil.ly/
UGX-4) beschreibt die verschiedenen Datentypen in Python und wie sie ver-
andert werden konnen.

4 | Kapitel 1: Explorative Datenanalyse



* Datenbanken sind in ihrer Einteilung der Datentypen detaillierter und beriick-
sichtigen Prizisionsniveaus, Datenfelder fester oder variabler Linge und mehr
(siche den W3Schools-SQL-Leitfaden (https://oreil.ly/cThTM).)

Tabellarische Daten

Der typische Bezugsrahmen fiir eine Analyse in der Data Science ist ein tabellari-
sches Datenobjekt (engl. Rectangular Data Object), wie eine Tabellenkalkulation
oder eine Datenbanktabelle.

»Tabellarische Daten« ist der allgemeine Begriff fiir eine zweidimensionale Matrix
mit Zeilen fiir die Beobachtungen (Fille) und Spalten fiir die Merkmale (Varia-
blen); in R und Python wird dies als Data Frame bezeichnet. Die Daten sind zu Be-
ginn nicht immer in dieser Form vorhanden: Unstrukturierte Daten (z.B. Text)
miissen zunichst so verarbeitet und aufbereitet werden, dass sie als eine Reihe von
Merkmalen in tabellarischer Struktur dargestellt werden kénnen (siehe »Struktu-
rierte Datentypen« auf Seite 2). Daten in relationalen Datenbanken miissen fiir die
meisten Datenanalyse- und Modellierungsaufgaben extrahiert und in eine einzelne
Tabelle tiberfithrt werden.

Schliisselbegriffe zu tabellarischen Daten

Data Frame
Tabellarische Daten (wie ein Tabellenkalkulationsblatt) sind die grundlegende
Datenstruktur fiir statistische und maschinelle Lernmodelle.

Merkmal
Eine Spalte innerhalb einer Tabelle wird allgemein als Merkmal (engl. Feature)
bezeichnet.
Synonyme
Attribut, Eingabe, Pridiktorvariable, Pridiktor, unabhingige Variable
Ergebnis
Viele datenwissenschaftliche Projekte zielen auf die Vorhersage eines Ergebnis-
ses (engl. Outcome) ab — oft in Form eines Ja-oder-Nein-Ergebnisses (ob bei-
spielsweise in Tabelle 1-1 eine »Auktion umkédmpft war oder nicht«). Die
Merkmale werden manchmal verwendet, um das Ergebnis eines statistischen
Versuchs oder einer Studie vorherzusagen..
Synonyme
Ergebnisvariable, abhiingige Variable, Antwortvariable, Zielgrofle, Aus-
gabe, Responsevariable

Eintrag
Eine Zeile innerhalb einer Tabelle wird allgemein als Eintrag (engl. Record) be-
zeichnet.
Synonyme
Fall, Beispiel, Instanz, Beobachtung
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Tabelle 1-1: Ein typisches Data-Frame-Format

Verkaufer- Schluss- Schluss-  Eroffnungs-

Kategorie Wahrung  Rating Dauer  tag preis preis umkampft?
Musik/Film/  USD 3249 5 Mon 0.01 0.01 0
Spiel

Musik/Film/ ~ USD 3249 5 Mon 0.01 0.01 0
Spiel

Automobil usb 35 7 Die 0.01 0.01 0
Automobil usb N5 7 Die 0.01 0.01 0
Automobil usb 35 7 Die 0.01 0.01 0
Automobil usb s 7 Die 0.01 0.01 0
Automobil usb 3115 7 Die 0.01 0.01 1
Automobil usb 3115 7 Die 0.01 0.01 1

In Tabelle 1-1 gibt es eine Kombination aus Mess- oder Zihldaten (z.B. Dauer und
Preis) und kategorialen Daten (z.B. Kategorie und Wihrung). Wie bereits erwihnt,
ist eine besondere Form der kategorialen Variablen eine binire Variable (ja/nein
oder 0/1), wie in der Spalte ganz rechts in Tabelle 1-1 — eine Indikatorvariable, die
angibt, ob eine Auktion umkadmpft war (mehrere Bieter hatte) oder nicht. Diese In-
dikatorvariable ist zufillig auch eine Ergebnisvariable, wenn das Modell vorhersa-
gen soll, ob eine Auktion umkimpft sein wird oder nicht.

Data Frames und Tabellen

Klassische Datenbanktabellen haben eine oder mehrere Spalten, die als Index be-
zeichnet werden und im Wesentlichen eine Zeilennummer darstellen. Dies kann
die Effizienz bestimmter Datenbankabfragen erheblich verbessern. In Pythons pandas-
Bibliothek wird die grundlegende tabellarische Datenstruktur durch ein Data-
Frame-Objekt umgesetzt. StandardmiRig wird automatisch ein ganzzahliger Index
far ein Data-Frame-Objekt basierend auf der Reihenfolge der Zeilen erstellt. In
pandas ist es auch moglich, mehrstufige bzw. hierarchische Indizes festzulegen, um
die Effizienz bestimmter Operationen zu verbessern.

In R ist die grundlegende tabellarische Datenstruktur mittels eines data.frame-Ob-
jekts implementiert. Ein data.frame hat auch einen impliziten ganzzahligen Index,
der auf der Zeilenreihenfolge basiert. Der standardmiflige data.frame in R unter-
stiitzt keine benutzerdefinierten oder mehrstufigen Indizes. Jedoch kann iiber das
Argument row.names ein benutzerdefinierter Schliissel erstellt werden. Um diesem
Problem zu begegnen, werden immer hiufiger zwei neuere Pakete eingesetzt:
data.table und dplyr. Beide unterstiitzen mehrstufige Indizes und bieten erhebli-
che Beschleunigungen bei der Arbeit mit einem data.frame.
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Unterschiede in der Terminologie
Die Terminologie bei tabellarischen Daten kann verwirrend sein.
Statistiker und Data Scientists verwenden oftmals unterschiedliche
\ Begriffe fiir ein und denselben Sachverhalt. Statistiker nutzen in ei-
nem Modell Prddiktorvariablen, um eine Antwortvariable (engl. Res-
ponse) oder eine abhdngige Variable vorherzusagen. Ein Datenwis-
senschaftler spricht von Merkmalen (engl. Features), um eine Ziel-
grofle (engl. Target) vorherzusagen. Ein Synonym ist besonders
verwirrend: Informatiker verwenden den Begriff Stichprobe (engl.
Sample) fiir eine einzelne Datenzeile, fiir einen Statistiker ist eine
Stichprobe hingegen eine Sammlung von Datenzeilen.

Nicht tabellarische Datenstrukturen

Neben tabellarischen Daten gibt es noch andere Datenstrukturen.

Zeitreihendaten umfassen aufeinanderfolgende Messungen derselben Variablen.
Sie sind das Rohmaterial fiir statistische Prognosemethoden und auch eine zentrale
Komponente der von Geriten — dem Internet der Dinge — erzeugten Daten.

Riumliche Daten- bzw. Geodatenstrukturen, die bei der Kartierung und Standort-
analyse verwendet werden, sind komplexer und vielfiltiger als tabellarische Daten-
strukturen. In der Objektdarstellung (engl. Object Representation) stehen ein Ob-
jekt (z.B. ein Haus) und seine raumlichen Koordinaten im Mittelpunkt der Daten.
Die Feldansicht (engl. Field View) hingegen konzentriert sich auf kleine raumliche
Einheiten und den Wert einer relevanten Metrik (z.B. Pixelhelligkeit).

Graphen- (oder Netzwerk-)Datenstrukturen werden verwendet, um physikalische,
soziale oder abstrakte Beziechungen darzustellen. Beispielsweise kann ein Dia-
gramm eines sozialen Netzwerks wie Facebook oder LinkedIn Verbindungen zwi-
schen Menschen im Netzwerk darstellen. Ein Beispiel fiir ein physisches Netzwerk
sind Vertriebszentren, die durch StrafRen miteinander verbunden sind. Diagramm-
strukturen sind fiir bestimmte Arten von Fragestellungen niitzlich, wie z.B. bei der
Netzwerkoptimierung und bei Empfehlungssystemen.

Jeder dieser Datentypen hat seine eigene spezifische Methodologie in der Data
Science. Der Schwerpunkt dieses Buchs liegt auf tabellarische Daten, dem grundle-
genden Baustein der pridiktiven Modellierung.

Graphen in der Statistik
In der Informatik und der Informationstechnologie bezieht sich der
Begriff Graph typischerweise auf die Darstellung von Verbindungen
\ zwischen Entititen und auf die zugrunde liegende Datenstruktur. In
der Statistik wird der Begriff Graph verwendet, um sich auf eine Viel-
zahl von Darstellungen und Visualisierungen zu beziehen, nicht nur
von Verbindungen zwischen Entititen. Zudem bezieht er sich aus-
schlieRlich auf die Visualisierung und nicht auf die Datenstruktur.
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Kernideen

* Die grundlegende Datenstruktur in der Data Science ist eine rechteckige Matrix,
in der die Zeilen den Beobachtungen entsprechen und die Spalten den Variablen
(Merkmalen).

* Die Terminologie kann verwirrend sein; es gibt eine Vielzahl von Synonymen,
die sich aus den verschiedenen Disziplinen ergeben, die zur Data Science beitra-
gen (Statistik, Informatik und Informationstechnologie).

Weiterfiihrende Literatur

* Dokumentation zu Data Frames in R (https://oreil.ly/NsONR)
* Dokumentation zu Data Frames in Python (https://oreil.ly/oxDKQ)

Lagemalle

Variablen fiir Mess- oder Zihldaten kénnen Tausende von unterschiedlichen Wer-
ten haben. Ein grundlegender Schritt bei der Erkundung Threr Daten ist die Ermitt-
lung eines »typischen Werts« fiir jedes Merkmal (Variable) — ein sogenanntes Lage-
mafS (engl. Estimates of Location): eine Schitzung dartiber, wo sich die Mehrheit

der Daten konzentriert (d.h. ihre zentrale Tendenz).

Schliisselbegriffe zu LagemaR3en

Mittelwert
Die Summe aller Werte dividiert durch die Anzahl der Werte.
Synonyme
arithmetisches Mittel, Durchschnitt
Gewichteter Mittelwert
Die Summe aller Werte, die jeweils mit einem Gewicht bzw. einem Gewich-
tungsfaktor multipliziert werden, geteilt durch die Summe aller Gewichte.
Synonym
gewichteter Durchschnitt
Median
Der Wert, bei dem die Hilfte der Daten oberhalb und die andere Hilfte unter-
halb dieses Werts liegt.
Synonym
50%-Perzentil
Perzentil
Der Wert, bei dem P % der Daten unterhalb dieses Werts liegen.
Synonym
Quantil
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Gewichteter Median
Der Wert, bei dem die Summe der Gewichte der sortierten Daten exakt die
Hilfte betrigt und der die Daten so einteilt, dass sie entweder oberhalb oder
unterhalb diesen Werts liegen.

Getrimmter Mittelwert
Der Mittelwert aller Werte, nachdem eine vorgegebene Anzahl von AusreifRern
entfernt wurde.
Synonym
gestutzter Mittelwert
Robust
Nicht sensibel gegentiber Ausreiflern.
AusreifSer
Ein Datenwert, der sich stark von den tibrigen Daten unterscheidet.
Synonym
Extremwert

Auf den ersten Blick mag fiir Sie die Ermittlung einer zusammenfassenden GrofRe,
die Aufschluss iiber einen vorliegenden Datensatz gibt, ziemlich trivial erscheinen:
Sie nehmen einfach den Mittelwert, der sich fiir den Datensatz ergibt. Tatsichlich
ist der Mittelwert zwar leicht zu berechnen und relativ zweckmifRig, aber er ist
nicht immer das beste Maf zur Bestimmung eines Zentralwerts. Aus diesem Grund
haben Statistiker mehrere alternative Schitzer zum Mittelwert entwickelt und be-
fiurwortet.

Metriken und Schitzwerte

Statistiker verwenden oft den Begriff Schdtzwert fiir einen aus den
vorliegenden Daten berechneten Wert, um zwischen dem, was wir
aus den Daten ziehen, und der theoretisch wahren oder tatsichlichen
Sachlage zu unterscheiden. Data Scientists und Geschiftsanalysten
sprechen bei einem solchen Wert von einer Metrik. Der Unterschied
spiegelt den Ansatz der Statistik im Vergleich zur Datenwissenschaft
wider: Die Beriicksichtigung von Unsicherheit steht im Mittelpunkt
der statistischen Disziplin, wihrnd in der Datenwissenschaft kon-
krete geschiftliche oder organisatorische Ziele im Fokus stehen. Da-
her kann man sagen, dass Statistiker Schitzungen durchfithren und
Data Scientists Messungen vornehmen.

Mittelwert

Das grundlegendste LagemaR ist der Mittelwert (genauer, das arithmetische Mittel)
oder auch der Durchschnitt. Der Mittelwert entspricht der Summe aller Werte divi-
diert durch die Anzahl von Werten. Betrachten Sie die folgende Zahlenfolge: {3 5
1 2}. Der Mittelwert betrdgt 3+ 5+ 1 +2) /4=11/4=2,75. Sie werden auf das
Symbol & (ausgesprochen als »x quer«) stoflen, das verwendet wird, um den Mittel-
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wert einer Stichprobe, die aus einer Grundgesamtheit gezogen wurde, darzustellen.
Die Formel zur Berechnung des Mittelwerts fiir eine Menge von Werten x4, x5, ...,
x,, lautet:

n o
Mittelwert = ¥ = =11
n

N (oder n) bezieht sich auf die Gesamtzahl aller Eintriige bzw. Beob-
achtungen. In der Statistik wird es groRgeschrieben, wenn es sich auf
eine Grundgesamtheit bezieht, und kleingeschrieben, wenn es auf
eine Stichprobe aus einer Grundgesamtheit abzielt. In der Data
Science ist diese Unterscheidung nicht von Relevanz, weshalb Sie
beide Moglichkeiten in Betracht ziehen kénnen.

Eine Variante des Mittelwerts ist der getrimmte Mittelwert, den Sie berechnen, in-
dem Sie eine feste Anzahl sortierter Werte an jedem Ende weglassen und dann den
Mittelwert der verbleibenden Werte bilden. Fiir die sortierten Werte x4y, x(), ...,
X(n)» Wobei x 1y der kleinste Wert und x,,) der grofite ist, wird der getrimmte Mittel-
wert mit p kleinsten und grofiten weggelassenen Werten durch folgende Formel
berechnet:

n—p .
getrimmter Mittelwert =x = m
n—2p

Durch die Verwendung des getrimmten Mittelwerts wird der Einfluss von Extrem-
werten beseitigt. Zum Beispiel werden bei internationalen Tauchmeisterschaften
die hochste und die niedrigste Punktzahl der funf Kampfrichter gestrichen, und als
Endpunktzahl wird der Durchschnitt der Punktzahlen der drei verbleibenden
Kampfrichter gewertet (https://oreil.ly/uV4P0). Dies macht es fiir einen einzelnen
Kampfrichter schwierig, das Ergebnis zu manipulieren, etwa um den Kandidaten
seines Landes zu begiinstigen. Getrimmte Mittelwerte sind sehr verbreitet und in
vielen Fillen der Verwendung des gewohnlichen Mittelwerts vorzuziehen (siehe
»Median und andere robuste LagemafSe« auf Seite 11 fiir weitere Erlduterungen).

Eine weitere Moglichkeit der Mittelwertbildung ist der gewichtete Mittelwert. Zur
Berechnung multiplizieren Sie jeden Datenwert x; mit einem benutzerdefinierten
Gewicht w; und dividieren die daraus resultierende Summe durch die Summe der
Gewichte. Die Formel fiir den gewichteten Mittelwert lautet dementsprechend:

2

gewichteter Mittelwert = ¥,, = —.-
i=1 Wi

Den gewichteten Mittelwert verwendet man hauptsichlich aus zwei Griinden:

* Einige Werte weisen von sich aus eine groflere Streuung auf als andere — um
den Einfluss stark streuender Beobachtungen zu verringern, erhalten sie ein
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geringeres Gewicht. Wenn wir z.B. den Mittelwert von mehreren Sensoren bil-
den und einer der Sensoren weniger genau misst, konnen wir die Daten dieses
Sensors niedriger gewichten.

* Unsere erhobenen Daten reprisentieren die verschiedenen Gruppen, an deren
Messung wir interessiert sind, nicht gleichmiflig. Beispielsweise ist es mog-
lich, aufgrund der Art und Weise, wie ein Onlineversuch durchgefiihrt wurde,
einen Datensatz zu gewinnen, der nicht alle Gruppen in der Nutzerbasis wahr-
heitsgemiR abbildet. Zur Korrektur kénnen wir den Werten der Gruppen, die
unterreprasentiert sind, ein hoheres Gewicht beimessen.

Median und andere robuste LagemafRle

Der Median entspricht dem mittleren Wert der sortierten Liste eines Datensatzes.
Wenn es eine gerade Anzahl von Datenpunkten gibt, ist der mittlere Wert eigent-
lich nicht im Datensatz enthalten, weshalb der Durchschnitt der beiden Werte, die
die sortierten Daten in eine obere und eine untere Hilfte teilen, verwendet wird.
Verglichen mit dem Mittelwert, bei dem alle Beobachtungen beriicksichtigt wer-
den, beruht der Median nur auf den Werten, die sich in der Mitte des sortierten Da-
tensatzes befinden. Dies mag zwar nachteilig erscheinen, da der Mittelwert wesent-
lich empfindlicher in Bezug auf die Datenwerte ist, aber es gibt viele Fille, in denen
der Median ein besseres LagemaR darstellt. Angenommen, wir méchten die durch-
schnittlichen Haushaltseinkommen in den Nachbarschaften um den Lake Wa-
shington in Seattle unter die Lupe nehmen. Beim Vergleich der Ortschaft Medina
mit der Ortschaft Windermere wiirde die Verwendung des Mittelwerts zu sehr un-
terschiedlichen Ergebnissen fithren, da Bill Gates in Medina lebt. Wenn wir statt-
dessen den Median verwenden, spielt es keine Rolle, wie reich Bill Gates ist — die
Position der mittleren Beobachtung bleibt unveriandert.

Aus den gleichen Grinden wie bei der Verwendung eines gewichteten Mittelwerts
ist es auch moglich, einen gewichteten Median zu ermitteln. Wie beim Median sor-
tieren wir zunichst die Daten, obwohl jeder Datenwert ein zugehoriges Gewicht
hat. Statt der mittleren Zahl ist der gewichtete Median ein Wert, bei dem die
Summe der Gewichte fiir die untere und die obere »Hiilfte« der sortierten Liste
gleich ist. Wie der Median ist auch der gewichtete Median robust gegeniiber Aus-
reiffern.

Ausreif3er

Der Median wird als robustes LagemalS angesehen, da er nicht von AusreifSern (Ex-
tremfillen) beeinflusst wird, die die Ergebnisse verzerren kénnten. Ausreifler sind
Werte, die sehr stark von allen anderen Werten in einem Datensatz abweichen. Die
genaue Definition eines AusreifSers ist etwas subjektiv, obwohl bestimmte Konven-
tionen in verschiedenen zusammenfassenden Statistiken und Diagrammen ver-
wendet werden (siehe »Perzentile und Box-Plots« auf Seite 21). Nur weil ein Daten-
wert einen AusreifRer darstellt, macht es ihn nicht ungiiltig oder fehlerhaft (wie im
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vorherigen Beispiel mit Bill Gates). Dennoch sind Ausreifler oft das Ergebnis von
Datenfehlern, wie z.B. von Daten, bei denen verschiedene Einheiten vermischt
wurden (Kilometer gegeniiber Metern), oder fehlerhafte Messwerte eines Sensors.
Wenn Ausreifler das Ergebnis fehlerhafter bzw. ungiiltiger Daten sind, wird der
Mittelwert zu einer falschen Einschitzung der Lage fithren, wohingegen der Me-
dian immer noch seine Giiltigkeit behilt. AusreifRer sollten in jedem Fall identifi-
ziert werden und sind in der Regel eine eingehendere Untersuchung wert.

Anomalieerkennung

Im Gegensatz zur gewohnlichen Datenanalyse, bei der Ausreifler
manchmal informativ sind und manchmal stéren, sind bei der Ano-
malieerkennung die Ausreiffer von Interesse, und der groRere Teil
der Daten dient in erster Linie dazu, den »Normalzustand« zu defi-
nieren, an dem die Anomalien gemessen werden.

Der Median ist nicht das einzige robuste LagemaR. Tatsichlich wird hiufig der ge-
trimmte Mittelwert verwendet, um den Einfluss von Ausreifiern zu vermeiden. So
bietet z.B. die Entfernung der unteren und oberen 10% der Daten (eine iibliche
Wahl) Schutz vor Ausreiflern, es sei denn, der Datensatz ist zu klein. Der ge-
trimmte Mittelwert kann als Kompromiss zwischen dem Median und dem Mittel-
wert gesehen werden: Er ist robust gegeniiber Extremwerten in den Daten, verwen-
det jedoch mehr Daten zur Berechnung des Lagemafes.

Weitere robuste Lagemale

Statistiker haben eine Vielzahl anderer Lagemafle entwickelt, und
zwar in erster Linie mit dem Ziel, einen Schitzer zu entwickeln, der
robuster und auch effizienter als der Mittelwert ist (d. h. besser in der
Lage, kleine Unterschiede hinsichtlich der Lage zwischen Datensit-
zen zu erkennen). Wihrend diese Methoden fiir kleine Datensitze
durchaus niitzlich sein konnen, diirften sie bei grofRen oder selbst bei
mittelgrofen Datensitzen keinen zusitzlichen Nutzen bringen.

Beispiel: Lagemale fiir Einwohnerzahlen und Mordraten

Tabelle 1-2 zeigt einen Auszug der ersten paar Zeilen eines Datensatzes, der Infor-
mationen zu den Einwohnerzahlen und Mordraten fiir jeden US-Bundesstaat ent-
hilt (Zensus 2010). Die Einheit fiir die Mordrate wurde mit »Morde pro 100.000
Personen pro Jahr« gewihlt.

Tabelle 1-2: Die ersten Zeilen des data.frame, der Auskunft tiber die Einwohnerzahlen und
Mordraten der einzelnen Bundesstaaten gibt

Bundesstaat  Einwohnerzahl ~ Mordrate  Abkiirzung

1 Alabama 4.779.736 57 AL
2 Alaska 710.231 56 AK
3 Arizona 6.392.017 4,7 AZ
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Tabelle 1-2: Die ersten Zeilen des data.frame, der Auskunft iiber die Einwohnerzahlen und
Mordraten der einzelnen Bundesstaaten gibt (Fortsetzung)

Bundesstaat  Einwohnerzahl ~ Mordrate  Abkiirzung

4 Arkansas 2.915.918 5,6 AR
5  (alifornia 37.253.956 44 (A
6  Colorado 5.029.196 2,8 Q]
7 Connecticut 3.574.097 24 a
8  Delaware 897.934 58 DE

Berechnen Sie den Mittelwert, den getrimmten Mittelwert und den Median fiir die
Einwohnerzahlen in R:!

> state <- read.csv('state.csv')

> mean(state[['Population']])

[1] 6162876

> mean(state[[ 'Population']], trim=0.1)
[1] 4783697

> median(state[['Population']])

[1] 4436370

In Python konnen wir zur Berechnung des Mittelwerts und des Medians die pandas-
Methoden des Data Frame verwenden. Den getrimmten Mittelwert erhalten wir
durch die Funktion trim mean aus dem Modul scipy.stats:

state = pd.read csv('state.csv')
state[ 'Population'].mean()

trim mean(state[ 'Population’], 0.1)
state[ 'Population'].median()

Der Mittelwert ist grofler als der getrimmte Mittelwert, der wiederum grofer als
der Median ist.

Dies liegt daran, dass der getrimmte Mittelwert die fiinf gréfSten und fiinf kleinsten
Bundesstaaten ausschlief3t (trim=0.1 entfernt 10% an beiden Enden der Vertei-
lung). Wenn wir die durchschnittliche Mordrate fiir das Land berechnen wollen,
miissen wir dazu den gewichteten Mittelwert oder den Median heranziehen, um
die unterschiedlich hohe Anzahl an Einwohnern in den Bundesstaaten zu beriick-
sichtigen. Da R in seiner Standardbibliothek keine Funktion fir den gewichteten
Median umfasst, miissen wir zu diesem Zweck zunichst das Paket matrixStats in-
stallieren:

> weighted.mean(state[['Murder.Rate']], w=state[['Population’]])
[1] 4.445834

> library('matrixStats")

> weightedMedian(state[[ 'Murder.Rate']], w=state[['Population']])
[1] 4.4

1 Der R- und der Python-Code sind auf das Wesentliche reduziert. Den vollstindigen Code sowie die
Datensitze zum Herunterladen finden Sie unter https://github.com/gedeck/practical-statistics-for-data-
scientists.
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Bei Python ist die Funktion zur Berechnung des gewichteten Mittelwerts im NumPy-
Paket enthalten. Fiir den gewichteten Median koénnen wir speziell das Paket
wquantiles (https://oreil.ly/4SIPQ) verwenden:

np.average(state[ 'Murder.Rate'], weights=state['Population’])
wquantiles.median(state[ 'Murder.Rate'], weights=state['Population’])

Im vorliegenden Fall sind der gewichtete Mittelwert und der gewichtete Median in
etwa gleich groR.

Kernideen
* Das wesentliche Lagemaf! ist der Mittelwert, der jedoch empfindlich auf Ex-
tremwerte (Ausreifier) reagiert.

* Andere Mafle (Median, getrimmter Mittelwert) sind weniger empfindlich gegen-
iiber Ausreiffern und ungewdhnlich verteilten Daten und daher robuster.

Weiterfiihrende Literatur

* In dem Wikipedia-Artikel zur zentralen Tendenz (https://oreil.ly/qUW2i) wer-
den verschiedene Lagemafle ausfiihrlich erliutert.

* John Tukeys Standardwerk aus dem Jahr 1977, Exploratory Data Analysis (Pear-
son), erweist sich nach wie vor als eine beliebte Lektiire.

Streuungsmafle

Die Lage ist nur eine Dimension bei der Zusammenfassung eines Merkmals. Eine
zweite Dimension, die Streuung (engl. Variability) — auch Variabilitit oder Disper-
sion genannt —, misst, ob die Datenwerte eng zusammenliegen oder weit gestreut
sind. Die Streuung ist das Herzstiick der Statistik: Sie wird gemessen, reduziert, es
kann unterschieden werden zwischen zufilliger und tatsichlicher Streuung, die
verschiedenen Quellen der wahren Streuung konnen identifiziert und Entschei-
dungen in Gegenwart der Streuung kénnen getroffen werden.

Schliisselbegriffe zu Streuungsmaf3en

Abweichung
Die Differenz zwischen den beobachteten Werten und dem Lagemaf} (engl.
Deviation).
Synonyme
Fehler, Residuen
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Varianz
Die Summe der quadrierten Abweichungen vom Mittelwert dividiert durch
n— 1, wobei n die Anzahl der Beobachtungen ist.
Synonym
mittlerer quadratischer Fehler

Standardabweichung
Die Quadratwurzel der Varianz.

Mittlere absolute Abweichung
Der Mittelwert der Absolutwerte der Abweichungen vom Mittelwert.
Synonyme
11-Norm, Manhattan-Norm
Mittlere absolute Abweichung vom Median
Der Median der Absolutwerte der Abweichungen vom Median.
Spannweite
Die Differenz zwischen dem groften und dem kleinsten Wert in einem Daten-
satz (engl. Range).
Ordnungsstatistik
Eine auf den Datenwerten basierende Metrik, sortiert vom kleinsten zum grofR-
ten.
Synonym
Rang
Perzentil
Der Wert, bei dem P % der Werte diesen Wert oder weniger und (100-P) %
diesen Wert oder mehr annehmen.
Synonym
Quantil
Interquartilsabstand
Die Differenz zwischen dem 75 %-Perzentil und dem 25 %-Perzentil.
Synonym

IQR

So wie es verschiedene Moglichkeiten gibt, die Lage zu messen (Mittelwert, Me-
dian usw.), so gibt es auch verschiedene Moglichkeiten, das AusmaR der Streuung
zu bestimmen.

Standardabweichung und ahnliche Maf3e

Die meistgenutzten Streuungsmafle basieren auf den Differenzen bzw. Abweichun-
gen zwischen den Lagemaflen und den beobachteten Daten. Fiir eine gegebene Zah-
lenfolge {1, 4, 4} ist der Mittelwert 3 und der Median 4. Die Abweichungen vom
Mittelwert entsprechen den jeweiligen Differenzen: 1 -3=-2,4-3=1,4-3 = 1.
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Diese Abweichungen geben uns Aufschluss dariiber, wie weit die Daten um den
Zentralwert herum gestreut sind.

Eine Moglichkeit, die Streuung zu messen, besteht darin, einen typischen Wert fiir
diese Abweichungen zu schitzen. Eine Mittelwertbildung iiber die Abweichungen
selbst wiirde uns nicht viel sagen — die negativen Abweichungen wiirden die posi-
tiven ausgleichen. Tatsichlich ist auch im vorliegenden Beispiel die Summe der Ab-
weichungen vom Mittelwert genau null. Stattdessen kénnen wir den Mittelwert
der Absolutwerte der Abweichungen vom Mittelwert bilden. Im vorhergehenden
Beispiel sind die Absolutwerte der Abweichungen {2 1 1}, und ihr Mittelwert er-
gibt 2 + 1+ 1) /3 = 1,33. Dieses MaR wird als mittlere absolute Abweichung be-
zeichnet und mit der folgenden Formel ermittelt:

. . _ Z?:] |Xl~ —-X |
Mittlere absolute Abweichung = ———

wobei % fur den Stichprobenmittelwert steht.

Die bekanntesten Streuungsmafle sind die Varianz und die Standardabweichung,
die auf den quadratischen Abweichungen beruhen. Die Varianz ist der Durch-
schnitt der quadrierten Abweichungen, und die Standardabweichung ist wiederum
die Quadratwurzel der Varianz:

2_ (- %)

Varianz =

“n

n-1
Standardabweichung  =s = +/Varianz

Die Standardabweichung ist viel leichter zu interpretieren als die Varianz, da sie auf
dieselbe Skala wie die Originaldaten bezogen ist. Dennoch mag es mit ihrer kom-
plizierteren und weniger intuitiven Formel merkwiirdig erscheinen, dass die Stan-
dardabweichung in der Statistik gegentiber der mittleren absoluten Abweichung
bevorzugt wird. Sie verdankt ihre Vorrangstellung der statistischen Theorie: Ma-
thematisch gesehen, ist es sehr viel vorteilhafter, quadrierte Werte zu verwenden —
und nicht Absolutwerte —, insbesondere in statistischen Modellen.

Die Anzahl der Freiheitsgrade und die Frage, ob n odern - 1?

In Statistikbiichern finden Sie fiir gewohnlich einen Abschnitt, der erklirt, warum
wir n — 1 im Nenner der Formel fiir die Varianz anstelle von n haben, was uns zum
Konzept der Freiheitsgrade fithrt. Diese Unterscheidung ist an sich nicht von grofter
Bedeutung, da n im Allgemeinen so groff ist, dass es keinen besonderen Unter-
schied macht, ob man durch n oder n — 1 dividiert. Aber falls es Sie interessiert, hier
folgt die Erklarung. Sie basiert auf der Pramisse, dass Sie auf Basis einer Stichprobe
Schitzungen tiber eine Grundgesamtheit (Population) vornehmen mochten.
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Wenn Sie intuitiverweise n im Nenner der Varianzformel verwenden, unterschit-
zen Sie den wahren Wert der Varianz und der Standardabweichung in der Grund-
gesamtheit. Dies wird als ein verzerrter Schitzer (engl. biased) bezeichnet. Wenn
Sie jedoch n— 1 anstelle von n einsetzen, ermitteln Sie einen unverzerrten (engl. un-
biased) bzw. erwartungstreuen Schitzer der Varianz.

Um vollstindig zu erkliren, warum die Verwendung von n zu einem verzerrten
Schitzer fahrt, miissen wir den Begriff der Freiheitsgrade heranziehen, der die An-
zahl der Einschrinkungen bei der Berechnung eines Schitzers beriicksichtigt. In
diesem Fall gibt es n — 1 Freiheitsgrade, da es eine Randbedingung gibt: Die Stan-
dardabweichung hingt von der Berechnung des Stichprobenmittelwerts ab. In den
meisten Anwendungsfillen miissen sich Data Scientists keine Gedanken tiber die
Anzahl der Freiheitsgrade machen.

Weder die Varianz noch die Standardabweichung oder die mittlere absolute Ab-
weichung ist gegeniiber Ausreiflern und Extremwerten robust (siche »Median und
andere robuste Lagemafle« auf Seite 11 fiir eine Erlduterung zu den robusten Lage-
maflen). Die Varianz und die Standardabweichung sind besonders empfindlich ge-
geniiber Ausreiflern, da sie auf den quadrierten Abweichungen beruhen.

Ein robustes Streuungsmaf? ist die mittlere absolute Abweichung vom Median (engl.
Median Absolute Deviation from the Median, MAD):

Mittlere absolute Abweichung vom = Median(|x1 -m|, |x2 - m| s oo Xy — m|)

wobei m dem Median entspricht. Wie der Median wird auch die mittlere absolute
Abweichung vom Median nicht durch Extremwerte beeinflusst. Es ist auch mog-
lich, eine getrimmte Standardabweichung analog zum getrimmten Mittelwert zu
berechnen (siche »Mittelwert« auf Seite 9).

Die Varianz, die Standardabweichung, die mittlere absolute Abwei-
chung und die mittlere absolute Abweichung vom Median sind
keine dquivalenten Streuungsmafle — selbst dann nicht, wenn die
Daten normalverteilt sind. So ist die Standardabweichung immer
grofer als die mittlere absolute Abweichung, die ihrerseits groRer als
die mittlere absolute Abweichung vom Median ist. Manchmal wird
die mittlere absolute Abweichung vom Median mit einem konstan-
ten Skalierungsfaktor multipliziert, um den Wert fiir den Fall, dass
die Daten normalverteilt sind, genau so zu skalieren wie die Stan-
dardabweichung. Der tiblicherweise verwendete Faktor von 1,4826
bedeutet, dass 50 % der Normalverteilung in den Bereich +MAD fal-
len (siehe z.B. https://oreil.ly/SfDk2).

Streuungsmafe auf Basis von Perzentilen

Ein anderer Ansatz zur Schitzung der Streuung basiert auf der Betrachtung der
Streuung der sortierten Daten. Statistiken, die auf sortierten (d.h. in einer Rang-
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folge geordneten) Daten basieren, werden als Ordnungsstatistiken bezeichnet. Das
grundlegende Maf ist die Spannweite: die Differenz zwischen dem groften und
dem kleinsten Wert. Die Minimal- und Maximalwerte selbst sind zwar durchaus
interessant und bei der Identifizierung von Ausreiffern niitzlich, aber die Spann-
weite erweist sich als dufRerst empfindlich gegeniiber Ausreiflern und ist als allge-
meines Streuungsmaf nicht sehr hilfreich.

Um der Anfilligkeit gegeniiber Ausreiffern vorzubeugen, kénnen wir vor der Er-
mittlung der Spannweite Werte an beiden Enden der Daten weglassen. Formal ba-
sieren diese Arten von Schitzern auf Unterschieden zwischen Perzentilen. In einem
Datensatz ist das P %-Perzentil so definiert, dass mindestens P % der Werte diesen
Wert oder weniger und mindestens (100 — P) % der Werte diesen Wert oder mehr
annehmen. Um zum Beispiel das 80 %-Perzentil zu ermitteln, miissen Sie die Daten
zunichst sortieren. Dann gehen Sie, beginnend beim kleinsten Wert, 80 % der Stre-
cke zum grofiten Wert weiter. Der Median ist tibrigens ein und dasselbe wie das
50%-Perzentil. Ein Perzentil ist im Wesentlichen dasselbe wie ein Quantil, wobei
Quantile durch Bruchzahlen angegeben werden (das 0,8-Quantil ist also dasselbe
wie das 80 %-Perzentil).

Ein gebriuchliches StreuungsmaR ist die Differenz zwischen dem 25 %-Perzentil
und dem 75 %-Perzentil, der sogenannte Interquartilsabstand (engl. Interquartile
Range, IQR). Hier ist ein einfaches Zahlenbeispiel: {3,1,5,3,6,7,2,9}. Wir sortieren
diese Zahlenfolge, um {1,2,3,3,5,6,7,9} zu erhalten. Das 25%-Perzentil liegt bei
2,5 und das 75 %-Perzentil bei 6,5, sodass der Interquartilsabstand 6,5 — 2,5 = 4 be-
tragt. Die Softwareprogramme konnen leicht unterschiedliche Ansitze haben, die
dann unterschiedliche Ergebnisse hervorbringen (siehe folgenden Hinweis); in der
Regel fallen diese Unterschiede jedoch gering aus.

Bei sehr groflen Datensitzen kann die Berechnung der genauen Perzentile rechne-
risch sehr aufwendig sein, da dazu alle Datenwerte sortiert werden miissen. Ma-
schinelle Lern- und Statistikprogramme verwenden spezielle Algorithmen, wie
[Zhang-Wang-2007], um einen Niherungswert fiir ein Perzentil zu erhalten, der
sehr schnell berechnet werden kann und eine gewisse Genauigkeit gewihrleistet.

Perzentile: Genaue Definition

Wenn wir eine gerade Anzahl an Werten haben (n ist gerade), dann
ist das Perzentil im Sinne der vorhergehenden Definition mehrdeu-
tig. Tatsdchlich konnten wir jeden Wert zwischen der Ordnungssta-
tistik x(j und x; , 1) nehmen, wobei j Folgendes erfiillt:

j+1

100* L <P <100*
n n

In formaler Hinsicht ist das Perzentil ein gewichteter Durchschnitt:
Perzentil(P) = (1 — w)x(j + wx (4.

fir ein gegebenes Gewicht w zwischen 0 und 1. In den verschiede-
nen verfiigbaren Statistikprogrammen gibt es leicht unterschiedliche
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Ansitze fiir die Auswahl von w. Tatsichlich bietet die R-Funktion
quantile neun verschiedene Alternativen zur Berechnung des Quan-
tils. Von kleinen Datensitzen abgesehen, brauchen Sie sich in der
Regel keine Gedanken dartiber zu machen, wie ein Perzentil genau
berechnet wird. In Python unterstiitzt das numpy.quantile fiinf An-
sdtze, wobei die lineare Interpolation voreingestellt ist.

Beispiel: StreuungsmaRe fiir die Einwohnerzahlen der
Bundesstaaten in den USA

Tabelle 1-3 (Tabelle 1-2 wird der Einfachheit halber erneut dargestellt) zeigt die
ersten paar Zeilen im Datensatz, in dem die Einwohnerzahlen und Mordraten fiir
jeden US-Bundesstaat enthalten sind.

Tabelle 1-3: Die ersten Zeilen des data.frame mit den Einwohnerzahlen und Mordraten nach

Bundesstaaten

Bundesstaat  Einwohnerzahl ~ Mordrate  Abkiirzung
1 Alabama 4.779.736 57 AL
2 Alaska 710.231 56 AK
3 Arizona 6.392.017 47 AZ
4 Arkansas 2.915.918 56 AR
5  California 37.253.956 4.4 CA
6  Colorado 5.029.19% 28 ©
7 Connecticut 3.574.097 24 a
8  Delaware 897.934 58 DE

Unter Verwendung der in R integrierten Funktionen fiir die Standardabweichung,
den Interquartilsabstand (IQR) und die mittlere absolute Abweichung vom Me-

dian konnen wir Streuungsmafe fiir die Einwohnerstatistiken der Bundesstaaten

berechnen:

d(state[['Population']])

1] 6848235

OR(state[['Population']])

ad(state[['Population']])

>'S
[1]
> 1
[1] 4847308
> m
[1] 3849870

Fiir ein Data-Frame-Objekt stehen uns in der pandas-Bibliothek verschiedene Metho-
den zur Berechnung der Standardabweichung und der Quantile zur Verfiigung.
Nach Ermittlung der Quantilswerte konnen wir den IQR berechnen. Fir die robuste
mittlere absolute Abweichung vom Median verwenden wir die Funktion robust.

scale.mad aus dem statsmodels-Paket:

Streuungsmale
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state[ 'Population’].std()
state[ 'Population’].quantile(0.75) - state['Population'].quantile(0.25)
robust.scale.mad(state[ 'Population'])

Die Standardabweichung ist fast doppelt so grof§ wie die MAD (in R wird die Ska-
lierung der mittleren absoluten Abweichung vom Median standardmiRig so ange-
passt, dass der Mittelwert die gleiche Skalierung besitzt). Dies ist nicht weiter ver-
wunderlich, da die Standardabweichung gegeniiber Ausreiflern sensibel ist.

Kernideen
* Die Varianz und die Standardabweichung sind die am weitesten verbreiteten
und routinemiRig berichteten StreuungsmaRe.
* Beide sind empfindlich gegeniiber Ausreifern.

* Zu den robusteren Maflen gehoren die mittlere absolute Abweichung, die mitt-
lere absolute Abweichung vom Median und Perzentile (Quantile).

Weiterfiihrende Literatur

* David Lanes Online-Statistik-Ratgeber hat einen Abschnitt iiber Perzentile
(https:/loreil.ly/o2fBI).

* Kevin Davenport hat einen niitzlichen Beitrag auf R-Bloggers (https://oreil.ly/
E7zcG) tiber Abweichungen vom Median und ihre robusten Eigenschaften
verfasst.

Exploration der Datenverteilung

Alle von uns behandelten MafRe fassen die Daten in einer einzigen Zahl zusammen,
um die Lage oder die Streuung der Daten zu beschreiben. Es ist auch wertvoll, zu
untersuchen, wie die komplette Verteilung der Daten aussieht.

Schliisselbegriffe zur Exploration von Verteilungen

Box-Plot
Ein von Tukey eingefiihrtes Diagramm zur schnellen Visualisierung der Daten-
verteilung.
Synonyme
Box-Whisker-Plot, Kastengrafik
Haufigkeitstabelle
Eine Ubersicht iiber die Anzahl der numerischen Werte, die in eine Menge von
Intervallen (Klassen, engl. Bins) fallen.
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Histogramm
Ein Diagramm der Hiufigkeitstabelle mit den Intervallen auf der x-Achse und
der Anzahl (oder dem relativen Anteil) auf der y-Achse. Balkendiagramme sind
zwar dhnlich, sollten aber nicht mit Histogrammen verwechselt werden (siehe
»Bindre und kategoriale Daten untersuchen« auf Seite 28 fiir eine Erlduterung
des Unterschieds).

Dichtediagramm

Eine geglittete Version des Histogramms, oft basierend auf einer Kerndichte-
schdtzung (engl. Kernel Density Estimate).

Perzentile und Box-Plots

In »Streuungsmafle auf Basis von Perzentilen« auf Seite 17 sind wir der Frage nach-
gegangen, wie Perzentile zur Messung der Streuung der Daten verwendet werden
konnen. Perzentile sind auch niitzlich, um die gesamte Verteilung zusammenfas-
send darzustellen. Es ist tiblich, die Quartile (25%-, 50%- und 75 %-Perzentile)
und die Dezile (10%-, 20%-, ..., 90%-Perzentile) anzugeben. Perzentile sind be-
sonders aussagekriftig, wenn man die Enden bzw. Réinder (die dufleren Bereiche)
der Verteilung zusammenzufassend darstellen mochte. In der breiten Offentlich-
keit ist in diesem Zusammenhang oft von der Redewendung »das eine Prozent« die
Rede, die genutzt wird, um Reiche im obersten 99 %-Perzentil der Vermogens-
bzw. Einkommensverteilung zu charakterisieren.

Tabelle 1-4 stellt einige Perzentile der Mordraten in den Bundesstaaten dar. In R
kénnen wir uns die Werte mithilfe der Funktion quantile ausgeben lassen:

quantile(state[['Murder.Rate']], p=c(.05, .25, .5, .75, .95))
5%  25% 50% 75%  95%
1.600 2.425 4.000 5.550 6.510

In Python kénnen Sie fiir einen Data Frame die pandas-Methode quantile nutzen,
um sich die Perzentile ausgeben zu lassen:

state[ 'Murder.Rate'].quantile([0.05, 0.25, 0.5, 0.75, 0.95])

Tabelle 1-4: Perzentile der Mordraten in den Bundesstaaten

5% 25% 50% 75% 95%
160 242 400 555 651

Der Median liegt bei vier Morden pro 100.000 Einwohner. In den Daten gibt je-
doch eine betrichtliche Streuung: Das 5%-Perzentil betrigt nur 1,6 und das 95 %-
Perzentil 6,51.

Die von Tukey [Tukey-1977] eingefiihrten Box-Plots stiitzen sich auf Perzentile und
bieten eine rasche Moglichkeit, die Verteilung Threr Daten zu visualisieren. Abbil-
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dung 1-2 zeigt einen in R erstellten Box-Plot fiir die Einwohnerzahlen der Bundes-
staaten:

boxplot(state[['Population']]/1000000, ylab='Einwohnerzahl (in Millionen)")

Die pandas-Bibliothek bietet eine Reihe von grundlegenden informativen Diagram-
men, die fir Data Frames genutzt werden kénnen; darunter auch Box-Plots:

ax = (state['Population']/1 000 000).plot.box()
ax.set_ylabel('Einwohnerzahl (in Millionen)')
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Abbildung 1-2: Box-Plot fir die Einwohnerzahlen der Bundesstaaten

Bei diesem Box-Plot kénnen wir auf einen Blick erkennen, dass die mittlere Ein-
wohnerzahl der Bundesstaaten etwa fiinf Millionen betrigt (Median), die Einwoh-
nerzahl fiir die Hilfte der Staaten zwischen etwa zwei und sieben Millionen liegt
und dass es einige bevolkerungsreiche Ausreifler gibt. Der obere und der untere
Rand des Rechtecks (Box) kennzeichnen jeweils das 75%- bzw. 25 %-Perzentil.
Der Median wird durch die fett gehaltene horizontale Linie in der Box angezeigt.
Die beiden vertikalen gestrichelten Linien, die als Whisker oder auch Antennen be-
zeichnet werden, erstrecken sich iiber den oberen und unteren Rand der Box, um
den Bereich, in dem der iiberwiegende Teil der Daten liegt, zu kennzeichnen. Es
gibt zahlreiche Varianten von Box-Plots (siehe z.B. die Dokumentation der R-
Funktion boxplot [R-base-2015]). StandardmiRig verlidngert die R-Funktion die
Whisker bis zu dem Datenpunkt, der am weitesten iiber die Box hinausgeht — je-
denfalls immer dann, wenn dieser Wert nicht mehr als das 1,5-Fache des IQR be-
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tragt. Die matplotlib-Bibliothek verwendet die gleiche Implementierung. In ande-
ren Softwareprogrammen kann eine abweichende Regel angewandt werden.

Alle Datenpunkte aufRerhalb der Whisker werden als einzelne Punkte oder Kreise
dargestellt (die in der Regel als AusreifRer angesehen werden).

Haufigkeitstabellen und Histogramme

Eine Hiufigkeitstabelle teilt den Wertebereich einer Variablen bzw. eines Merk-
mals in gleich grofle Intervalle auf und gibt uns Auskunft dartiber, wie viele Werte
jeweils in jedes Intervall fallen. Tabelle 1-5 zeigt Thnen eine in R erstellte Hiufig-
keitstabelle fiir die Einwohnerzahlen der Bundesstaaten:

breaks <- seq(from=min(state[['Population']]),
to=max(state[['Population']]), length=11)
pop freq <- cut(state[['Population']], breaks=breaks,
right=TRUE, include.lowest=TRUE)
table(pop_freq)

Die Funktion pandas.cut erzeugt eine Zahlenfolge (Series-Objekt), die die Werte
auf die einzelnen Intervalle abbildet. Mit der Methode value counts erhalten wir
die Hiufigkeitstabelle:

binnedPopulation = pd.cut(state['Population’], 10)
binnedPopulation.value counts()

Tabelle 1-5: Eine Hdufigkeitstabelle fiir die Einwohnerzahlen der Bundesstaaten

Intervallnummer  Intervall Haufigkeit ~ Bundesstaaten

1 563.626—4.232.658 24 WY,VT,ND,AK,SD,DE,MT,RI,NH,ME,HI,ID,NE, WV,NM,N
V,UT,KS,AR,MS,IA,CT,0K,OR

2 4.232.659-7.901.691 14 KY,LA,SC,AL,CO,MN,WI,MD,MO,TN,AZ,IN,MA, WA

3 7.901.692-11.570.724 6 VANJ,NG,GA,MI,0H

4 11.570.725-15.239.757 2 PAIL

5 15.239.758-18.908.790 1 FL

6 18.908.791-22.577.823 1 NY

7 22.577.824-26.246.856 1 X

8 26.246.857-29.915.889 0

9 29.915.890-33.584.922 0

10 33.584.923-37.253.956 1 CA

Der Bundesstaat mit der geringsten Einwohnerzahl ist Wyoming mit 563.626 Men-
schen, und der bevolkerungsreichste ist Kalifornien mit 37.253.956 Einwohnern.
Daraus ergibt sich ein Wertebereich von 37.253.956 — 563.626 = 36.690.330, den
wir in gleich grofle Klassen — sagen wir 10 — aufteilen miissen. Bei 10 gleich groRen
Klassen hat jede Klasse eine Breite von 3.669.033, sodass das erste Intervall von
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563.626 bis 4.232.658 reicht. Im Gegensatz dazu liegt in der obersten Klasse fiir
das Intervall 33.584.923 bis 37.253.956 Einwohnern nur ein einziger Bundesstaat:
Kalifornien. Die beiden nichstkleineren Klassen sind unbesetzt, bis als Nichstes
der Bundesstaat Texas erreicht wird. Es ist wichtig, die leeren Klassen mit einzube-
ziehen; die Tatsache, dass sich in diesen Intervallen keine Werte befinden, ist eine
niitzliche Information. Es kann auch hilfreich sein, mit verschiedenen Klassenbrei-
ten bzw. Intervallgrofen zu experimentieren. Wenn sie zu groR sind, treten wich-
tige Merkmale der Verteilung gegebenenfalls nicht mehr sichtbar hervor. Werden
sie zu klein gewiihlt, ist das Ergebnis zu feingliedrig, und die Fihigkeit, ein adiqua-
tes Gesamtbild zu liefern, geht verloren.

Sowohl Hiufigkeitstabellen als auch Perzentile fassen die Daten
durch die Einteilung in Klassen bzw. Intervalle tibersichtlich zusam-
men. Im Allgemeinen haben Quartile und Dezile in jeder Klasse die
gleiche Anzahl an Beobachtungen (Klassen mit gleicher Anzahl —
equal-count bins), aber die Klassenbreite ist fiir gewohnlich unter-
schiedlich. Bei der Hiufigkeitstabelle umfassen die Klassen hinge-
gen eine unterschiedliche Anzahl an Beobachtungen, wohingegen
die Klassenbreite identisch ist (gleich breite Klassen — equal-size bins).

Ein Histogramm bietet die Moglichkeit, eine Hiufigkeitstabelle zu visualisieren.
Dabei werden die Klassen auf der x-Achse abgetragen und die Anzahl der Beobach-
tungen bzw. Hiufigkeiten auf der y-Achse. In Abbildung 1-3 erstreckt sich die bei
zehn Millionen (1e+07) Einwohnern in der Mitte befindliche Klasse von ungefihr
acht bis zwolf Millionen Einwohnern und umfasst insgesamt sechs Beobachtun-
gen. Um ein Histogramm in R zu erstellen, das dem in Tabelle 1-5 entspricht, miis-
sen Sie lediglich die Funktion hist mit dem Argument breaks verwenden:

hist(state[['Population']], breaks=breaks)

Die pandas-Bibliothek unterstiitzt die Erstellung von Histogrammen fiir Data-
Frame-Objekte mit der Methode DataFrame.plot.hist. Mit dem Schliisselwortar-
gument bins konnen Sie die Anzahl der Klassen bestimmen. Die verfiigbaren plot-
Methoden geben jeweils ein Objekt zuriick, das die Koordinaten in Bezug auf die
Achsen bereithilt und eine weitere Feinabstimmung des Diagramms mithilfe der
matplotlib-Bibliothek ermoglicht:

ax = (state['Population'] / 1_000_000).plot.hist(figsize=(4, 4))

ax.set xlabel('Einwohnerzahl (in Millionen)')
Das Histogramm wird in Abbildung 1-3 gezeigt. Im Allgemeinen werden Histo-
gramme so erstellt:

* Auch unbesetzte Klassen werden in die Darstellung mit einbezogen.
* Die Klassen sind gleich breit.

* Die Wahl der Anzahl der Klassen (oder, dquivalent, der Klassenbreite) ist dem
Anwender tiberlassen.
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