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Vorwort

Dieses Buch ist aus Vorlesungen entstanden, die ich wiederholt an der Universität
Frankfurt am Main gehalten habe. Wie das rege Interesse der Hörer gezeigt hat,
besteht hierfür ein Bedarf. Bei der in den Kursvorlesungen gebotenen Fülle von
Themen kommt die spezielle Relativitätstheorie in der Regel zu kurz. Andererseits
sind die Monographien über dieses Thema sehr umfangreich und eher zum Nach-
schlagen geeignet. Das vorliegende knapper gehaltene Buch sollte man durchlesen
können. Es enthält den Stoff, der in der zweistündigen Vorlesung behandelt wurde.
Die Darstellung ist aber ausführlicher als in einem Vorlesungsskript, sodass sich
das Buch auch zum Selbststudium eignen dürfte.

Beim Leser werden gewisse Kenntnisse über den Stoff aus den Kursvorlesun-
gen vorausgesetzt. So wird z. B. das berühmte Experiment von Michelson und
Morley nicht noch einmal im Detail geschildert. Der fortgeschrittene Leser wird
bald merken, dass die Akzente hier anders als in den meisten Darstellungen,
insbesondere den durchaus bewährten älteren, gesetzt sind. Man gelangt so auf
direkterem Weg zu den wesentlichen Aussagen der Theorie. Der Zugang zur
speziellen Relativitätstheorie erfolgt also ganz im Sinne der auf Seite 7 zitierten
Bemerkung von A. Einstein. Zur Aufstellung der Lorentz-Transformation genügt
das Relativitätsprinzip und erst nachdem man die Existenz einer endlichen Grenz-
geschwindigkeit erkannt hat, wird diese mit der Lichtgeschwindigkeit identifiziert.
Die immer wieder diskutierten Paradoxa werden mit Beispielen ausführlich behan-
delt. Dem Inhalt der speziellen Relativitätstheorie angemessen ist die kovariante
Formulierung der Gesetze als Relationen zwischen Tensorgrößen. Das Kapitel vier
dient als Einführung in die Tensorrechnung. Zum weiteren Inhalt des Buches sei
auf das Inhaltsverzeichnis hingewiesen.

Durch eine Reihe von Literaturangaben soll der Leser an die Fachliteratur heran-
geführt werden. Er sollte nach dem Studium dieses Buches die in den Zeitschriften
veröffentlichten Arbeiten besser verfolgen können. Die Aufgaben im Anhang
mögen zum weiteren Nachdenken anregen.

Eine Zusammenstellung neuerer Experimente zur Prüfung der speziellen Relativi-
tätstheorie findet der Leser am Schluss des Buches in Kapitel 10. Diese einführende
Diskussion der Testtheorien wird in dem von Herrn Professor Claus Lämmerzahl
(Bremen) verfassten Anhang B ergänzt durch eine aufwendigere systematische
Diskussion der kinematischen und dynamischen Testtheorien, die den theoreti-
schen Rahmen bei der Auswertung der zunehmend genaueren experimentellen
Überprüfung der speziellen Relativitätstheorie bilden.

Ich möchte Herrn Lämmerzahl für seine hilfreiche Mitarbeit, auch bei anderen
Stellen des Textes, herzlich danken.



vi Vorwort

Ebenfalls danke ich meiner Tochter Ullinca für ihre Hilfe, insbesondere auch
für die von ihr gezeichneten Vignetten am Schluss der Kapitel, sowie Herrn
Klaus Horn vom Verlag Europa-Lehrmittel für die nun über viele Jahre hinweg
vertrauensvolle Zusammenarbeit.

Möge das Buch weiterhin viele Freunde gewinnen.

Oldendorf, im Mai 2021 Ulrich E. Schröder
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1 Einleitung

In den folgenden Kapiteln wollen wir die physikalischen Grundlagen der heutigen
Auffassung von Raum und Zeit untersuchen und die Folgerungen aus den raum-
zeitlichen Symmetrietransformationen diskutieren. Diese Symmetrietransforma-
tionen, ausgedrückt durch die Lorentz- bzw. Poincaré-Gruppe, sind universell, d. h.,
sie gelten für alle physikalischen Vorgänge. Somit wären grundsätzlich alle Teilge-
biete der Physik im Hinblick auf ihr Verhalten gegenüber der Lorentz-Gruppe zu
untersuchen. Wir werden im Folgenden zwei besonders wichtige Teilgebiete der
klassischen Physik betrachten, die relativistische Mechanik des Massenpunktes
und die Elektrodynamik als Beispiel für eine relativistische Feldtheorie.

Der Name Relativitätstheorie ist insofern keine besonders glückliche Bezeichnung,
als er den wesentlichen Inhalt der Theorie in eher negativer Weise umschreibt und
Anlass zu mancherlei Missverständnissen wurde. Er verdankt seine Entstehung
dem fundamentalen Relativitätsprinzip, das von Poincaré und Einstein zu Beginn
dieses Jahrhunderts formuliert wurde und als Grundlage für die Entwicklung
der neuen Vorstellungen von Raum und Zeit diente. Mit diesem Prinzip wurde
der Begriff des absolut ruhenden Äthers zurückgewiesen, der zuvor in Analogie
zur Elastizitätslehre als Medium für optische und elektromagnetische Phäno-
mene eingeführt worden war. Man wollte alle Erscheinungen mithilfe mecha-
nischer Theorien erklären (Mechanismus) und gelangte so zu der Auffassung,
dass eine Bewegung relativ zum absolut ruhenden Äther feststellbar sein müss-
te. Diese Vorstellung widersprach der bereits Galilei (1564–1642) und Huygens
(1629–1695) bekannten Tatsache, dass in der Mechanik zwischen gleichförmig
bewegten Körpern nur Relativgeschwindigkeiten feststellbar sind (Galilei’sches
Relativitätsprinzip der Mechanik). Die hypothetische Existenz eines ruhenden
Äthers wurde dann durch erdrückende experimentelle Tatsachen widerlegt. Ein
absolut ruhendes Bezugssystem (der Äther) war auch durch elektromagnetische
Vorgänge, bei großer Genauigkeit der Experimente (Versuch von Michelson und
Morley, 1887), nicht festzustellen! Wie in der Mechanik können offenbar nur
relative Bewegungen beobachtet werden. Diese Einsicht kommt in dem Prinzip
der Relativität oder Relativitätsprinzip zum Ausdruck, wie es in Arbeiten von
Poincaré und konsequenter als universell gültiges Axiom von Einstein formuliert
wurde. Einstein entwickelte daraus mithilfe des zusätzlichen Prinzips der Konstanz
der Lichtgeschwindigkeit in seiner Arbeit von 1905 die Grundlagen der speziellen
Relativitätstheorie.

Aber das Wesentliche der Relativitätstheorie besteht weniger in der Relativierung
von Begriffen wie Raum und Zeit, sondern in der Erkenntnis, dass die Naturgesetze
unabhängig von der Wahl gleichförmig zueinander bewegter Bezugssysteme sind.



2 Kapitel 1 Einleitung

Die entscheidende Aussage ist die Invarianz des Naturgeschehens gegenüber dem
Wechsel des Bezugssystems gemäß den Transformationen der Lorentz-Gruppe.
Damit wird geklärt, in welchem Sinn absolute, d. h. vom Bezugssystem unabhängi-
ge, physikalische Aussagen überhaupt möglich sind. Die Invarianz gegenüber der
Lorentz-Gruppe impliziert eine bestimmte Struktur der physikalischen Gesetze.
Dies erleichtert ihre Formulierung wesentlich. So kann das Relativitätsprinzip als
ordnendes Prinzip der Naturgesetze angesehen werden.



2 Zur historischen Entwicklung

der Relativitätstheorie

Die geschichtliche Entwicklung der speziellen Relativitätstheorie ist ebenso in-
teressant wie lehrreich. Hier soll wenigstens kurz auf die drei entscheidenden
Beiträge von Hendrik Anton Lorentz (1853–1928), Henri Poincaré (1854–1912)
und Albert Einstein (1879–1955) eingegangen werden, die 1904–1905 den Durch-
bruch brachten. 1) Zwar ist der formale Inhalt dieser Arbeiten durchaus ähnlich, die
Begründungen und die dahinterstehenden Auffassungen unterscheiden sich jedoch
beträchtlich.

Die Vorstellung eines absolut ruhenden Äthers war suspekt geworden, nachdem
es Michelson und Morley nicht gelungen war, die Bewegung der Erde gegen den
ruhenden Äther zu bestimmen, obwohl die Genauigkeit des Experiments ausrei-
chend war, um den nach der bisherigen Theorie erwarteten Effekt festzustellen.
Zur Rettung des Ätherbegriffs schlug G. F. Fitzgerald und unabhängig von ihm
Lorentz die Hypothese vor, dass sich materielle Objekte in ihrer Bewegungsrich-
tung um den Faktor

√

1 − v2/c2 verkürzen (Lorentz-Fitzgerald-Kontraktion). Mit
dieser Annahme konnte man das Null-Resultat des Michelson-Versuchs deuten. 2)

Für Lorentz und auch für Poincaré stellte sich nun das Problem, wie man die
Kontraktion selbst durch ein Modell der Materie erklären sollte. Zu bemerken
ist, dass auch bei Einstein eine Kontraktion der Längen vorkommt. Diese bedarf
jedoch keiner Erklärung durch ein Modell, da sie sich nach dem Relativitätsprinzip
allein als Folge des Standpunktes des Beobachters ergibt. Lorentz dagegen gab
eine Erklärung der Kontraktion durch ein elektromagnetisches Modell der Materie.
Diese Elektronentheorie der Materie wurde in der Arbeit von 1904 dargelegt. In
dieser Arbeit ist die Lorentz-Transformation enthalten, auch die Transformation
für die elektromagnetischen Feldstärken ~E und ~B. Neben der absoluten Zeit führte
Lorentz eine Ortszeit t ′ ein, betrachtete dies aber als mathematischen Kunstgriff.
Er versuchte nicht, der Ortszeit irgendeine experimentelle Bedeutung zu geben.

1) H. A. Lorentz, Proc. Acad. Sc. Amsterdam 6, 809 (1904);
H. Poincaré, Comp. Rend. 140, 1504 (1905) und Rendiconti Circolo Mat. Palermo 21, 129 (1906);
A. Einstein, Ann. Physik 17, 891 (1905).
Die Arbeiten von Lorentz und Einstein sind abgedruckt in dem Sammelband: H. A. Lorentz,
A. Einstein, H. Minkowski, Das Relativitätsprinzip, 1913, Neudruck Darmstadt 1958. Eine kom-
mentierte englische Übersetzung wesentlicher Teile der Arbeit von Poincaré (Rendiconti) findet
man in H. M. Schwarz, Am. J. Phys. 39, 1287 (1971), 40, 862 u. 1282 (1972).

2) Die Lorentz’sche Kontraktionshypothese widerspricht jedoch dem Relativitätsprinzip. Lorentz und
Fitzgerald glaubten an eine absolute Ruhelänge, die jeden bewegten Objekt zukommt. Die Verkür-
zung bewegter Maßstäbe ist hier kein reziproker Effekt wie in der Relativitätstheorie und könnte
im Prinzip dazu dienen, ein absolut ruhendes Bezugssystem festzustellen. Das ist aber nach aller
Erfahrung nicht möglich.



4 Kapitel 2 Zur historischen Entwicklung

Der physikalische Sinn der Transformationsgleichungen blieb dunkel. Lorentz hielt
noch 1910 an dem Begriff des ruhenden Äthers fest und hat schließlich die absolute
Gleichzeitigkeit nur zögernd aufgegeben.

In seinem Vortrag beim Internationalen Kongreß der Künste und Wissenschaften in
St. Louis (1904) gab H. Poincaré eine klare Formulierung des Relativitätsprinzips.
„Das Relativitätsprinzip sagt, dass die Gesetze physikalischer Phänomene sowohl
für einen ruhenden als auch für einen in gleichförmige Bewegung versetzten
Beobachter dieselben sein sollten; das heißt, dass wir kein Urteil darüber haben
und auch gar nicht haben können, ob wir uns nun in einer solchen Bewegung
befinden oder nicht.“ 3) Sein Denken ist jedoch von dem Einsteins verschieden.
Poincaré kannte die Lorentz’sche Arbeit von 1904 und nach seiner Ansicht sollte
das Relativitätsprinzip erklärt werden, etwa wie Lorentz es mit der dynamischen
Erklärung der Lorentz-Kontraktion versucht hatte. Allerdings wies er auch auf die
zu große Zahl willkürlicher Hypothesen bei Lorentz hin. Poincaré deutete auch an,
dass eine neue Mechanik anstelle der Newton’schen Mechanik gefunden werden
müsste. Die neue Mechanik wurde jedoch nicht von ihm formuliert, sie blieb
ein Programm. Mit seiner Feststellung, dass die Lorentz-Transformationen eine
Gruppe bilden, lieferte Poincaré einen bleibenden Beitrag zur Relativitätstheorie.
In der Arbeit von 1905 prägte er den Namen Lorentz-Transformation und Lorentz-
Gruppe und zeigte die Invarianz der Maxwell’schen Gleichungen (in Vakuum)
gegenüber Lorentz-Transformationen. Er konnte die Maxwell-Gleichungen aus
einem invarianten Wirkungsprinzip ableiten. Poincaré fand auch die Interpretation
der Lorentz-Transformationen als Drehungen im vierdimensionalen Euklidischen
Raum mit den Koordinaten x, y, z, ict.

Den entscheidenden Beitrag aber lieferte A. Einstein 4) in seiner berühmten Arbeit
„Zur Elektrodynamik bewegter Körper“, Ann. Physik 17, 891-921 (1905). Nach
dem heutigen Stand der Kenntnisse, darf man davon ausgehen, dass Einstein
weder die Lorentz’sche Arbeit (1904) noch Poincarés Artikel (1905) kannte. 5)

Für Einstein erweist sich die Einführung eines Lichtaethers als überflüssig. Er
geht davon aus, dass alle Versuche, eine absolute Bewegung relativ zum Aether
festzustellen, fehlgeschlagen sind. 6) Dies rechtfertigt die Forderung, dass die
Äquivalenz gleichförmig bewegter Bezugssysteme, gültig in der Newton’schen
Mechanik, universelle Gültigkeit haben sollte (Einstein’sches Relativitätsprinzip).

3) H. Poincaré, Bulletin Sc. Mathem. 28, 302 (1905); mit geringen Änderungen übersetzt in: H. Poin-
caré, Wert der Wissenschaft, Leipzig und Berlin 1910, S. 128–150.

4) Einen ausführlichen Beitrag zur wissenschaftlichen, philosophischen und historischen Analyse der
Entwicklung von Einsteins Relativitätstheorie im Zeitraum von 1905 bis 1911 findet man in dem
inhaltsreichen Band von A. I. Miller: „Albert Einstein’s Special Theory of Relativity, Emergence
(1905) and Early Interpretation (1905–1911)“, Addison-Wesley, Reading 1981. Auch sei hier
auf das hervorragende Buch von A. Pais hingewiesen: A. Pais: „Raffiniert ist der Herrgott . . . “:
Albert Einstein – Eine wissenschaftliche Biographie, Friedr. Vieweg & Sohn, Braunschweig 1986.
Ausführlich und lesenswert ist ferner: A. Fölsing: „Albert Einstein. Eine Biographie“, Surkamp
Verlag, Frankfurt am Main 1993/1995.

5) G. Holton, Am. J. Phys. 28, 627 (1960).
6) Das Experiment von Michelson und Morley wird dabei nicht erwähnt.
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Hervorzuheben ist, dass bei Einstein das Relativitätsprinzip zur axiomatischen
Grundlage der Theorie gehört. Die daraus abzuleitenden Folgerungen sollen mit
dem Experiment verglichen werden.

Als zweite Annahme kommt hinzu, dass die Lichtgeschwindigkeit im Vakuum
in allen gleichförmig zueinander bewegten Bezugssystemen gleich groß ist. Sie
ist eine universelle Konstante, d. h., sie ist unabhängig von der Geschwindigkeit
der gleichförmig bewegten Lichtquelle relativ zum Beobachter. Einstein gibt keine
detaillierte Begründung für die Gültigkeit dieser Postulate, sondern stellt lediglich
fest, dass diese Annahmen aufgrund der Tatsachen universell erfüllt sind. Diese
beiden Feststellungen sind nur scheinbar im Widerspruch wegen der traditionellen
und unbegründeten Annahme, dass der Begriff der Gleichzeitigkeit zweier Ereig-
nisse absolute Bedeutung besitzt. In der Newton’schen Physik könnte man in einem
Gedankenexperiment einen Lichtstrahl einholen. Wegen der einfachen Addition
der Geschwindigkeiten wäre die Lichtgeschwindigkeit für Beobachter in relativ
zueinander bewegten Bezugssystemen durchaus verschieden. Dies kann vermieden
werden, indem man den Begriff der absoluten Zeit aufgibt. Damit entfällt auch
der scheinbare Gegensatz zwischen beiden Hypothesen, die genügen, um zu einer
widerspruchsfreien Elektrodynamik bewegter Körper zu gelangen.

Einstein analysiert die Definition der Gleichzeitigkeit mithilfe von Messvorschrif-
ten. Wenn man die zur Zeitmessung benutzten Uhren mithilfe von Lichtsignalen
eicht, stellt man fest, dass Ereignisse, die in einem Bezugssystem K gleichzeitig
sind, in einem dazu gleichförmig bewegten System K ′ nicht mehr gleichzeitig sind.
Man hat die in der Newton’schen Physik gültige Relation t = t ′ aufzugeben. Aus
den obigen Postulaten wird die Lorentz-Transformation abgeleitet, Längenkon-
traktion der Maßstäbe und Zeitdilatation der Uhren werden diskutiert. In Einsteins
Theorie ist allerdings die Längenkontraktion kein Bestandteil irgendeines beson-
deren Modells der Kräfte, welche die Materie zusammenhalten, sondern gehört zur
Definition der Länge. Ebenso gehört die Zeitdilatation zur Definition der Zeit. Das
neue Gesetz zur Addition von Geschwindigkeiten wird abgeleitet, demzufolge ein
Lichtstrahl nicht mehr eingeholt werden kann. Die Transformationsgleichungen für
das elektromagnetische Feld werden angegeben, Doppler-Effekt und Aberration
des Lichts erklärt. Die Dynamik des Elektrons wird beschrieben, Folgerungen
hinsichtlich der Bewegung eines Elektrons in einem konstanten elektrischen und
magnetischen Feld werden gezogen. Die berühmte Relation E0 = mc2 ist hier
explizit noch nicht enthalten, sondern tritt in der späteren Arbeit auf: „Ist die
Trägheit eines Körpers von seinem Energieinhalt abhängig? “(Ann. Physik 18,
639–641 (1905)).

Zusammenfassend darf man wohl feststellen: „Den Anfang zur speziellen Relati-
vitätstheorie machte H. A. Lorentz, die physikalische Grundlage und den physika-
lischen Gehalt zeigte A. Einstein, die mathematische Struktur ist bei H. Poincaré
am klarsten. “ 7)

7) F. Hund, Geschichte der physikalischen Begriffe, Teil 2, 2. Aufl., Mannheim 1978, S.70.
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Aus heutiger Sicht, so könnte man meinen, müssen die neuen Gedanken Einsteins
allgemein wie eine Erleuchtung, wie die Zerschlagung des Gordischen Knotens
gewirkt haben. Doch stellte sich eine Wirkung erst vereinzelt und zögernd ein.
Einsteins Ideen lösten jedenfalls zunächst keine Vielzahl anderer Beiträge zu
diesem Thema aus. Dies begann erst nach etwa vier Jahren. Es war Max Planck
(1858–1947), der offenbar sofort die Bedeutung der Einstein’schen Arbeiten er-
kannte. Er gab bereits 1906 die Lagrange-Funktion der relativistischen Mechanik
in der noch heute benutzten Form an.

Poincaré selbst äußerte später Zweifel am Relativitätsprinzip. Unter dem Eindruck
der frühen experimentellen Ergebnisse von W. Kaufmann zur spezifischen La-
dung schnell bewegter Elektronen schrieb Poincaré 1906: „Das Relativitätsprin-
zip braucht durchaus nicht die umfassende Bedeutung zu haben, die man ihm
zugeschrieben hat.“ 8) Bis zu seinem Tode (1912) befasste er sich häufig mit dem
Relativitätsprinzip, ohne jedoch den Einstein’schen Beitrag in seinen Arbeiten zu
würdigen. H. A. Lorentz stimmte nach und nach der Relativitätstheorie immer
mehr zu.

Als bedeutender Beitrag zur weiteren Entwicklung der Relativitätstheorie ist die
kovariante Formulierung von Hermann Minkowski (1864–1909) anzusehen. Er
benutzte das vierdimensionale Raum-Zeit-Kontinuum und zeigte, dass sich die
Einstein’sche Theorie besonders einfach in der Sprache der pseudoeuklidischen
Geometrie (Minkowski-Raum) ausdrücken ließ. Bei der Versammlung Deutscher
Naturforscher und Ärzte 1908 in Köln hielt Minkowski einen mehr populären Vor-
trag über „Raum und Zeit“, der große Beachtung fand und der Relativitätstheorie
weithin Geltung verschaffte. 9) In seinen Lebenserinnerungen bemerkt Max Born
(1882–1970) über seinen damaligen Lehrer H. Minkowski: „Später sagte er mir,
dass es ein großer Schock für ihn war, als Einstein seine Abhandlung veröffent-
lichte, in der die Gleichwertigkeit der verschiedenen Raumzeiten für sich relativ
zueinander bewegende Beobachter verkündet wurde, da er unabhängig davon zu
den gleichen Ergebnissen gekommen war. Er hatte sie nur nicht veröffentlicht, da
er zuvor die mathematische Struktur in ihrer ganzen Pracht ausarbeiten wollte.“ 10)

Der große Experimentator Albert Michelson (1852–1931) konnte sich mit der
Relativitätstheorie nicht befreunden. Wie sich Einstein später erinnerte, hat Mi-
chelson beim einzigen Zusammentreffen mit Einstein im Jahre 1931 ihm gegenüber
geäußert, er bedaure es ein wenig, dass seine eigenen Arbeiten dieses Monstrum
in Gang gesetzt hätten. 11)

Damit kommen wir zu der Frage, ob das Michelson-Morley-Experiment wirklich
Grundstein und Ausgangspunkt von Einsteins Relativitätstheorie gewesen ist, wie
es in vielen Lehrbüchern dargestellt wird. In Einsteins Arbeit von 1905 wird jeden-

8) Zitiert in S. Goldberg, Am. J. Phys. 35, 934 (1967).
9) H. Minkowski, Phys. Z. 10, 104 (1909); auch abgedruckt im Sammelband „Das Relativitätsprinzip“,

l.c., S.54
10) M. Born, Mein Leben, Nymphenburger Verlagshandlung, München 1975, S. 186
11) G. Holton, Am. J. Phys. 37, 968 (1969)
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falls weder das Experiment erwähnt noch auf andere Literaturquellen hingewiesen.
Einstein, der die Bedeutung des Michelson-Experiments durchaus gewürdigt hat,
nimmt selbst in einem Brief (1954) hierzu Stellung: „Auf meine eigene Entwick-
lung hat Michelsons Resultat keinen besonderen Einfluss gehabt. Ich erinnere mich
nicht einmal, ob ich von all dem wusste, als ich meine erste Arbeit schrieb (1905).
Das erklärt sich daraus, dass ich aus vielen Gründen fest davon überzeugt war, dass
es keine absolute Bewegung gibt, und mein Problem war nur, wie dies mit unserem
Wissen über die Elektrodynamik vereinbart werden könnte. So lässt sich verstehen,
warum Michelsons Experiment in meinen persönlichen Bemühungen keine oder
zumindest keine bestimmende Rolle spielte.“ 12)

Die Zeitgenossen Einsteins waren jedoch über den Ausgang des Michelson-
Versuchs sehr erstaunt. Die Ätherhypothese geriet dadurch ins Wanken. Es ist aber
ein unnötiger Umweg, etwa die historischen Irrtümer nachvollziehen zu wollen,
indem man zunächst den unrealistischen Begriff des ruhenden Äthers einführt, um
ihn schließlich wieder zu eliminieren. Außerdem müsste man dazu noch weitere
Experimente heranziehen. Auch aus diesem Grunde, und nicht nur aus historischer
Sicht, ist der Michelson-Versuch nicht das allein entscheidende Experiment. Man
kann nicht aus dem Michelson-Versuch die Relativitätstheorie deduzieren.

Allgemeiner bemerkt Einstein in seinem Artikel „Prinzipien der Forschung“ zu
diesem Problem: „Höchste Aufgabe der Physiker ist also das Aufsuchen jener
allgemeinsten elementaren Gesetze, aus denen durch reine Deduktion das Weltbild
zu gewinnen ist. Zu diesen elementaren Gesetzen führt kein logischer Weg, sondern
nur die auf Einfühlung in die Erfahrung sich stützende Intuition.“ 13)

Wir werden also im Folgenden vom Einstein’schen Relativitätsprinzip allein aus-
gehen, um daraus die spezielle Relativitätstheorie zu entwickeln.

12) Der vollständige Wortlaut des Briefes an Davenport ist in der zitierten Arbeit von G. Holton (1969)
zu finden. Weitere Einzelheiten enthält das Kapitel „Einstein, Michelson und das experimentum
crucis“in den historischen Studien von G. Holton: Thematische Analyse der Wissenschaft, die
Physik Einsteins und seiner Zeit, Suhrkamp Taschenbuch Verlag (stw 293). Frankfurt/M. 1981.

13) A. Einstein, Mein Weltbild (Hrsg. C. Seelig) Frankfurt/M. 1955 (Ullstein Buch Nr. 65) S.109.





3 Physikalische und begriffliche

Grundlagen der speziellen

Relativitätstheorie

3.1 Die Hypothesen der Newton’schen Mechanik

Bei der Formulierung der Newton’schen Mechanik, in deren Mittelpunkt das
Newton’sche Bewegungsgesetz steht

d

dt

(

m
d~r
dt

)

= ~F (3.1)

gehen außer den bekannten Newton’schen Axiomen eine Anzahl weiterer Annah-
men ein. Diese werden oft nicht ausdrücklich erwähnt, da man sie sozusagen für
selbstverständlich hält. 1) Durch die spezielle Relativitätstheorie werden aber einige
dieser Hypothesen abgeändert. Deshalb sollen diese kurz erläutert werden.

Im dreidimensionalen Raum mit euklidischer Geometrie führt man rechtwinklige
kartesische Koordinaten ein, welche die Lage des sich nach dem Gesetz (3.1)
bewegenden Teilchens beschreiben. Der Raum ist isotrop und homogen. Für die
vorkommenden Vektoren gelten Vektoralgebra und Vektoranalysis. Unter allen
möglichen sich relativ zueinander beliebig bewegenden Koordinatensystemen ist
eine Klasse besonders ausgezeichnet. In dieser Klasse von Koordinatensystemen,
die Inertialsysteme genannt werden, gilt das Galilei’sche Trägheitsgesetz (Newtons
Lex prima). Nur in einem Inertialsystem, das man auch als unbeschleunigtes Sys-
tem beschreiben kann, bleibt ein Körper, auf den keine eingeprägten Kräfte wirken
(~F = 0), im Zustand der Ruhe oder der Bewegung mit konstanter Geschwindigkeit.
Es ist zweckmäßig, die physikalischen Gesetze (etwa das Newton’sche Bewe-
gungsgesetz) auf ein Inertialsystem zu beziehen, weil sie darin ihre einfachste
Form annehmen. So gilt das Newton’sche Bewegungsgesetz in der einfachen
Form (3.1) nur in einem Inertialsystem. Als Beispiel für ein Inertialsystem mag
ein Raumschiff in schwerelosem Zustand mit abgestellten Triebwerken und ohne
Eigendrehung dienen. Ein dazu beschleunigtes System ist kein Inertialsystem. In
solchen Systemen gilt eine der Gleichung (3.1) ähnliche Beziehung. Zur eingepräg-
ten Kraft ~F treten dann noch Scheinkräfte hinzu, die man auch als Trägheitskräfte
bezeichnet (z. B. Zentrifugalkraft, Corioliskraft). Ein mit der Erde fest verbundenes
Koordinatensystem ist genau genommen kein Inertialsystem, weil die Erde rotiert
und sich um die Sonne bewegt. Auch die Sonne bewegt sich auf einer Bahn
um den Mittelpunkt der Galaxis. Doch kann man in der Praxis oft die kleinen
Effekte der Erdrotation und der Bahnbewegung der Erde, oder der Bewegung der

1) Zum gesunden Menschenverstand, den man hier anführen könnte, sei die zugespitzte Formulierung
von A. Einstein zitiert: „Der gesunde Menschenverstand – das sind all die Vorurteile, die sich bis
zum achtzehnten Lebensjahr im Bewusstsein ausgebildet haben.“
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Sonne (Fixsterne) vernachlässigen. So kann ein mit der Erde, Sonne (Fixsternen)
verbundenes Koordinatensystem (näherungsweise) als Inertialsystem angesehen
werden. Beispiele für Situationen, in denen man die zusätzlichen Trägheitskräfte
beachten muss, sind der Foucaultsche Pendelversuch und die durch die Erddrehung
bedingte Ablenkung eines aus großer Höhe frei fallenden Körpers.

Die zweite Annahme betrifft die Zeit. Man führt in der Newton’schen Mechanik
eine absolute Zeitskala ein, die in allen relativ zueinander bewegten Koordinaten-
systemen verwendet werden kann. Dann hat auch die Aussage, dass zwei Ereig-
nisse gleichzeitig stattfinden, absolute Bedeutung. Der Begriff der Gleichzeitigkeit
ist wichtig, denn um die Länge eines bewegten Maßstabes zu messen, muss man
im ruhenden System Anfang und Ende des Maßstabes gleichzeitig markieren.
Dies ist wesentlich für die Definition der Länge eines bewegten Körpers. In der
Relativitätstheorie wird die Hypothese der absoluten Zeit aufgegeben.

Es wird weiterhin angenommen, dass beim Übergang zu einem anderen Koordi-
natensystem die im Newton’schen Bewegungsgesetz (3.1) vorkommende Masse
unverändert bleibt, d. h., dass sie eine invariante Größe ist. In der relativistischen
Mechanik ist die Masse invariant gegenüber Poincaré-Transformationen.

3.2 Das Galilei’sche Relativitätsprinzip und seine Grenzen

Man kann nun leicht einsehen, dass alle gleichmäßig zueinander bewegten Iner-
tialsysteme in der Newton’schen Mechanik gleichberechtigt sind. Ein absolut ru-
hendes Inertialsystem kann mithilfe rein mechanischer Vorgänge nicht festgestellt
werden. Zum Beweis betrachtet man zwei Bezugssysteme K und K ′, die sich relativ
zueinander mit konstanter Geschwindigkeit ~v bewegen und deren Anfangslagen
zur Zeit t = 0 zusammenfallen. Die Koordinaten eines Punktes P, bezogen auf K ′

bzw. K, gehen durch die Galilei-Transformation auseinander hervor

~x ′
=~x −~vt

t ′ = t. (3.2)

Weil die Geschwindigkeit~v nicht von der Zeit abhängt und t = t ′ gilt (Hypothese
der absoluten Zeit), sind die Beschleunigungen in beiden Bezugssystemen gleich

d2~x ′

dt ′2
=

d2~x
dt2

.

Da ferner die Masse eine vom Bezugssystem unabhängige Konstante ist, folgt

~F = m
d2~x ′

dt ′2
.

Die rechte Seite dieser Gleichung kann aber als Definition der Kraft im System K ′

angesehen werden

~F ′
= m

d2~x ′

dt ′2
.
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Man stellt also fest, dass die Gesetze der Mechanik in allen Bezugssystemen gleich
lauten, die aus einem Inertialsystem durch Galilei-Transformationen hervorgehen.
Dies ist das Relativitätsprinzip der Newton’schen Mechanik. Danach ist es nicht
möglich, durch rein mechanische Versuche ein besonderes Inertialsystem (als
ruhend) auszuzeichnen.

Die Galilei-Transformationen bilden eine Gruppe. Wir beschränken uns hier
darauf, von den Gruppeneigenschaften nur die Verknüpfung zweier durch die
Geschwindigkeiten~v1 und~v2 gekennzeichneten Gruppenelemente anzugeben. Die
Ausführung der Transformationen

~x ′
=~x −~v1t, t ′ = t

~x ′′
=~x ′

−~v2t, t ′′ = t ′

hintereinader ergibt wieder ein Element der Gruppe

~x ′′
=~x −~vt, t ′′ = t

das durch die Geschwindigkeit ~v = ~v1 + ~v2 bestimmt ist. Dies ist die in der
Newton’schen Mechanik gültige Addition der Geschwindigkeiten.

Die bei allen Transformationen einer Gruppe ungeänderten Größen bezeichnet
man als Invarianten der Transformationsgruppe. So ist z. B. die oben eingeführte
Masse eine Invariante der Galilei-Gruppe. Wie wir vorhin gesehen haben, än-
dert das Newton’sche Gesetz bei Anwendung von Galilei-Transformationen seine
Form nicht, es ist unter diesen Transformationen kovariant (forminvariant). Das
Galilei’sche Relativitätsprinzip (oder besser Invarianzprinzip) kann somit formal
durch die Forderung ausgedrückt werden, dass die Gesetze der Mechanik (oder
möglicherweise einer anderen Theorie) unter den Transformationen der Galilei-
Gruppe kovariant sein müssen.

Das so formulierte Invarianzprinzip ist zunächst auf die Newton’sche Mechanik
beschränkt, die Gesetze der Elektrodynamik etwa sind nicht einbezogen. Nun inter-
essieren in der Physik aber universelle Prinzipien. Kann das Galilei’sche Invarianz-
prinzip als universell angesehen werden? Die Antwort ist nein. Um uns davon zu
überzeugen, wollen wir die beiden damit unmittelbar zusammenhängenden Fragen
untersuchen: Gilt die Newton’sche Mechanik bei großen Geschwindigkeiten? Ist
die Elektrodynamik kovariant unter Galilei-Transformationen?

1) Zum Test der Mechanik bei großen Geschwindigkeiten betrachten wir einen
Versuch, bei dem Elektronen in einem Linearbeschleuniger durch Anlegen von
Hochspannungen (MeV) auf sehr hohe Geschwindigkeiten gebracht werden kön-
nen. Nachdem die Elektronen der Ladung e im Beschleuniger eine bestimm-
te Potenzialdifferenz ϕ durchlaufen haben, besitzen sie die kinetische Energie
Ekin = eϕ (MeV). Den anschließenden Driftraum der Länge l durchfliegen die
Elektronen in der Zeit t, die folgendermaßen gemessen wird. Zwei am Anfang
bzw. am Ende des Driftraums angebrachte Elektroden nehmen beim Ein- bzw.
Austritt der geladenen Teilchen elektrische Impulse auf. Diese werden über gleich
lange Kabel zu einem Katodenstrahloszillographen geleitet. Die Übertragungszeit
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der Signale von den Messpunkten zum Oszillographen sind dann gleich, und aus
dem am Oszillographen sichtbaren Impulsabstand kann die zu messende Flugzeit
der Elektronen t bestimmt werden. Aus der Relation v = l/t folgt dann ihre
Geschwindigkeit. Der Versuch wurde bei den in Figur 1 eingezeichneten Energien
Ekin = 0,5; 1,0; 1,5; 4,5 MeV und bei 15 MeV durchgeführt. 2)

Durch eine kalorische Messung der Elektronenenergie am Ende der Driftkammer
wurde außerdem bestätigt, dass die Elektronen nach dem Beschleunigungsvorgang
tatsächlich die berechnete kinetische Energie eϕ besitzen.

1
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E

kin
in MeV

v

2 16 2 2

in 10 m /s

Figur 1 Elektronen können nicht auf Überlichtgeschwindigkeit beschleunigt werden

Die gestrichelte Gerade in Figur 1 veranschaulicht den nach der Newton’schen
Mechanik zu erwartenden linearen Zusammenhang zwischen v2 und Ekin,
v2

= 2Ekin/me. Die Steigung dieser Geraden beträgt 2/me. Für Teilchen
mit größerer Masse als die des Elektrons würde sie also flacher verlaufen.
Die Messungen (ausgezogene Linie in Figur 1) zeigen nun bei höheren
Energien (großen Geschwindigkeiten) eine drastische Abweichung von der
Newton’schen Voraussage. Man findet ferner, dass die Elektronen nicht beliebig
hohe Geschwindigkeiten erreichen können und dass die Grenzgeschwindigkeit
offenbar gleich der Lichtgeschwindigkeit im Vakuum 3 · 108 m/s ist. Dies wird
auch durch die in Figur 1 nicht eingetragene Messung bei 15 MeV bestätigt und
in besonders eindrucksvoller Weise durch neuere Messungen bei den um drei
Größenordnungen höheren Energien von 10 . . . 20 · 103 MeV. 3)

Die Laufzeit der hochenergetischen Elektronen für eine Strecke von 1 km Länge
wurde mit der des Lichts verglichen. Bei einer Genauigkeit hinsichtlich der Zeit-
messung von 10−12 s konnte kein Unterschied in den Laufzeiten festgestellt wer-

2) Weitere Einzelheiten über diesen Versuch findet man in W. Bertozzi, Am. J. Phys. 32, 551 (1964).
3) Diese Messungen wurden am großen Linearbeschleuniger in Stanford durchgeführt (siehe

Z. G. J. Guiragossián et al., Phys. Rev. Letters 34, 335 (1975).


