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1.3 Introductive Electrolytes

As shown in Figure 1.25b, the investigation of electrolyte for Li plating/striping
can be dated back to the nineteenth century, using a nonaqueous electrolyte with
LiCl and pyridine. Then, different salts and solvents were studied [208, 209].
After preliminary studies, aprotic solvents were proved to be useful to inhibit the
reaction between Li metal and electrolytes. In the 1960s, due to the demand for
high-energy-density storage systems, the electrolytes used in LMBs started to get
attention. Electrolytes with alkyl carbonate esters such as propylene carbonate
(PC) as solvents and LiPF, or LiClO, as Li salts were used in rechargeable batteries
due to their good ionic conductivity [210]. However, carbonate ester-based elec-
trolytes showed low coulombic efficiency, which hindered their further application
[211].

In the late 1970s, ether electrolytes were reported, which could obtain high CE
and stable reversibility of the Li electrode due to the formation of more suitable SEI
layers with both organic and inorganic contents [212]. With the commercialization
of Li-ion batteries with graphite as anode, the research on electrolytes for LMBs
was limited. Recently, as graphite anodes are approaching their theoretical capacity,
there has been a renaissance in LMBs. At this stage, excellent strategies have
been applied to improve the cycling stability of both anode and cathode through
electrolyte modifications. Adding suitable electrolyte additives is a simple and
promising way to in situ form stable solid electrolyte interfaces on both anode and
cathode, leading to enhanced cycling stability of LMBs [213]. For example, gradient
SEI layer was formed by adding bisfluoroacetamide (BFA) into the electrolyte,
consisting of a C-F rich surface and a LiF rich bottom layer (Figure 1.26a,b), which
can contribute to the preferential reduction of BFA on Li metal surface due to
higher reductive potentials (Figure 1.26c) [214]. As a result, the LillLi batteries
can stably cycle for 400 cycles at a current density of 1 mA cm~! (Figure 1.26d).
The solvation structures of Li ions can also be changed by adding electrolyte
additives, such as alkyl-triphenyl-phosphonium bromides (alkyl-TPPB) [215].
The presence of Br~ ions in the electrolyte can enlarge the reaction distance
between Li ions with solvents (Figure 1.26e). Thus, the coordinate number of EC
in solvation structures decreases, which can suppress the reduction of solvents
and improve the stability of electrolytes. HCEs were also reported to improve the
cycling stability of Li metal anodes [216, 217]. In addition, HCEs exhibit good
oxidation stability, which can simultaneously improve the stability of cathode
materials, such as LiNi, ¢Mn,,; Co, ; O, (NMC811). However, high cost and viscosity
of HCEs make them unsuitable for practical applications. Therefore, diluents are
added into electrolytes to form localized high-concentration electrolytes (LHCES)
[218]. LHCEs exhibit the advantages of HCEs, as well as decrease the cost and
viscosity of HCEs, which are regarded as advanced liquid electrolytes for Li metal
batteries.

Except these electrolyte modifications, some functional electrolytes were also
studied, such as nonflammable electrolytes [219], high-voltage electrolytes [220],
electrolytes operated at extreme conditions (such as high or low temperature)
[221]. Significant advances from both the fundamental understanding and practical
engineering have been made, but the reaction between Li metal and electrolyte is
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Figure 1.26 (a) XPS spectra of F 1s in Lil|Li cells after 10 cycles in LiPF,-EC/DMC-BFA
electrolyte. (b) Theoretical calculation of redox potentials of EC, DMC, BFA, and FA
molecules; (c) cycling performance of Lil|Li cells using LiPF,-EC/DMC-BFA electrolyte at a
current density of 1 mA cm=2 with a cutoff capacity of 0.5 mAh cm=2. Source: Reproduced
with permission Li et al. [214]. (d) The comparison of the distance between Li* ion and O
atom of the EC and DMC molecules with and without the Br~ ion coordinator. Source:
Reproduced with permission Qi et al. [215].

not inhibited, which will affect the practical applications of LMBs with long-term
requirements.

1.4 Prospects

Over the past several decades, LMBs have been regaining intensive research atten-
tion due to their high energy density compared with Li-ion batteries. Until now,
practical applications of LMBs with different cathodes is not realized due to their
inherent drawbacks. Therefore, to solve these detrimental issues and realize the
practical deployment of LMBs, many problems need to be addressed:

(1) Mechanism: Clear understanding of the reaction mechanism is vital to further
improve electrochemical performance of batteries. The mechanism of Li,O
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decomposition on a cathode catalyst in Li-O, batteries is not elucidated yet.
Due to the sluggish kinetics of O,, designing cathodes with high surface area
as well as catalysts with high OER catalytic activity is important. In addition,
for practical applications of Li-O, batteries, the effect of CO, in air should be
considered, which can react with Li,O, to produce Li,CO;. For Se cathodes,
the redox reaction pathway in carbonate electrolytes is not clear. Some works
indicate a single-conversion process, while others indicate a multiple-reaction
process. In addition, due to the insolubility of polyselenides in carbonate
electrolytes, in-depth research needs to be done on carbonate electrolytes rather
ether-based electrolytes.

(2) Shuttle effect: The shuttle effect is a big problem in Li-S, Li-Se/Te, Li-1,/Br, bat-

teries. To solve this problem, designing cathode host materials with both physi-
cal and chemical adsorption properties is a promising way, such as heteroatom
doping on carbonaceous materials and introducing metal-based polar species.
Inserting a block interlayer is the simplest way. For practical applications, lean
electrolytes and high mass loading should be considered, which are generally
are paid less attention. Exploring SSEs with high ionic conductivity is the direct
way to inhibit the shuttle effect.

(3) Li metal anodes: Due to random deposition of Li ions, the dendrite growth is

the biggest challenge with Li metal batteries. More works on anode protection
need to be done, such as electrolyte additives, SSEs, or artificial SEI layer on Li
metal. To further understand anode and electrolyte degradation as well as the
components and structures of electrolyte interfaces, new analytical tools and in
situ techniques should be applied.

If these problems are solved, Li metal batteries will take great strides toward their

practical applications.
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