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highest vanadium oxidation state. It has a layered structure and a positive cross-cell 
structure during crystallization [216]. The monolayer consists of a twisted triangu-
lar biconical polyhedron with O atoms around V atoms. The polyhedron forms a 
(V2O4)n zigzag double chain along the direction (001), sharing edges and cross-
linking edges along the direction (100), forming a 2D layer. The layers are also 
stacked together by vdW force to form bulk crystals.

Among the currently known TMO materials, only a few have a layered structure, 
and most of them are nonlayered structures in which atoms are connected by chem-
ical bonds in the 3D direction of the crystal [217]. Some common nonlayer struc-
tured TMOs are CeO2, TiO2, In2O3, HfO2, and Fe2O3. Most of their crystal structures 
are different from each other, so there is no general formula  [218]. CeO2 is one 
example of nonlayer structured TMOs. CeO2 has a fluorite structure and the space 
group is Fm3m (Figure 1.7c). Fluorite structure is formed on the basis of FCC unit 
cell, in which cations and anions occupy octahedral space. In the CeO2 structure, 
each Ce4+ ion coordinates with eight equivalent O2− nearest neighbors, while each 
O2− ion coordinates with four nearest neighbors Ce4+ [78]. There is no obvious natu-
ral delamination inside the crystal of the material, so it cannot be separated by 
methods such as micromechanical exfoliation. However, if the vertical chemical 
bonds inside the crystal are broken, the thickness of the crystal is reduced to an 
atomic size and a 2D plane with a certain lateral size appears, then 2D TMOs differ-
ent from the corresponding parent crystal can be obtained (Figure 1.7d).

Compared with layer structured TMOs, nonlayer structured TMOs combine the 
advantages of an atomically thin structure and a highly active surface and also produce 
many new characteristics. When the structure of the material changes from a 3D bulk 
to a 2D layer with an atomic thickness of only a few nanometers, the sharp decrease in 
the thickness causes the distortion of the material lattice structure, and finally a stable 
structure with a lower surface energy is formed. The reconstruction of crystal structure 
will also lead to the change of energy band structure and electronic state [219]. Due to 
the breaking of the chemical bonds in the vertical direction of the 3D matrix, a large 
number of unsaturated dangling bonds are generated on the newly formed surface. 
Together with the strong surface polarization, a highly active surface with many active 
sites and a large specific surface area is formed [218], making it expected to have high-
efficiency catalytic ability and energy storage performance. In addition, the 2D planar 
structure makes 2D nonlayer structured TMOs compatible with microelectronic tech-
nology processing [220]. It can overcome the shortcomings of the high rigidity of tra-
ditional semiconductor materials such as silicon, making it expected to be widely used 
in the emerging flexible electronic fields such as wearable technology.

Different methods have been designed to synthesize 2D TMOs based on gas phase 
and liquid phase processes. It is still a challenging task to precisely synthesize inor-
ganic planar crystals of one or more unit thickness during gas phase synthesis. 
Layer by layer epitaxy of two-dimensional films is classified as Frank van der Merwe 
growth [221]. For TMOs, the flux of adsorbed atoms and the lowest unfilled surface 
energy of the substrate on which the new material is deposited determine the occur-
rence of layer by layer oxide epitaxy [222]. For the physical deposition in the vapor 
phase, in a small period superlattice, one or more cell surfaces may grow 
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independently or in combination. The most common 2D TMO vapor phase tech-
niques include CVD, MBE, atomic layer deposition (ALD), and pulsed laser deposi-
tion (PLD). In order to successfully deposit atomic-scale thin oxide layer or 
superlattice, it is necessary to precisely adjust deposition parameters. Especially in 
MBE, 2D deposition needs to significantly reduce the flux of adsorbed atoms, so it 
usually needs ultrahigh vacuum environment, which increases the complexity of 
equipment and deposition cost. Another problem is the influence of the substrate 
on the perfect deposition of oxides. The lattice matching and surface energy factors 
should be considered at the same time.

Many current 2D TMO synthesis techniques rely on liquid phase environments. 
Oxide epitaxial layers can be solvothermally grown in liquid solutions (at elevated 
temperatures) with or without a guiding agent [218, 223]. The carrier solvent can be 
water based and depends on the evaporation temperature of the solution, which 
may be necessary to be carried out in a pressurized container. The purity of the ana-
lyte and solvent plays an important role in the final result. Solution-based technol-
ogy can be performed in one step, forming a layer directly on the substrate. Similar 
to the vapor deposition technique, it is important to consider the registration of the 
unit cell and the substrate or the layers near it for the nonscattering displacement 
and exchange of free carriers. The crystal orientation should be controlled at the cell 
level in these cases, and other quasi liquid methods may also be applied. The precur-
sor of the material can be obtained by secondary processes such as spin coating, dip 
coating, or drop casting, such as oxygen annealing.

If the products synthesized in liquid or gas phase are layered crystals, the number 
of layers can be reduced by using the exfoliation step. These layered crystals can 
form different material patterns between TMO planes. After the exfoliation is com-
pleted, the pattern can be left to stabilize the oxide layer or be removed [224].
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