1.5 Symmetry Considerations

Cartesian coordinate systems:

1 0 0
(TI=]l0 1 0 (1.22)
0 01
Substituting (1.22) in (1.19), we can rewrite (1.19) as:
dyje = (=1)"dy, (1.23)

Here, n <3 is the number of cases where any of the three indices is equal 3 (e.g.
n=0ford,y,,n=1ford,,; orn=2ford,,;). Accordingly, the tensor of piezoelectric
coefficients in the matrix (Voigt notation) will take the form:

dll d12 d13 0 0 d16
[dl=|dy dy dyy 0 0 dy (1.24)
0 0 0 dy dy O

with 10 independent piezoelectric coefficients.

1.5.2 The Choice of the Cartesian Coordinate System

According to (1.18), the values of piezoelectric coefficients depend on the choice
of the coordinate system. Therefore, every time when piezoelectric coefficients of a
material are reported or retrieved from a literature, it is crucial to know how the coor-
dinate system is chosen. All physical properties are described in Cartesian coordinate
systems and are commonly referred to as the crystal physical coordinate system. It
is imperative to understand that this system is not related to the experimental setup
but rather to the basis vectors of the crystal itself.

For single crystals, it is convenient to relate the axes of the crystal’s physical
coordinate system e, e,, e; to the axes of the crystallographic, a,, a,, a; and the
reciprocal crystallographic coordinate systems a7, a;, a;. The basis vectors of the
reciprocal coordinate system are related to that of the crystallographic coordinate
system by the scalar products aia;‘ = 6;. Table 1.3 summarizes these three types
of coordinate systems, including their metric (the lengths and the angles between
the basis vectors), their usage, and their conventional choice. The standard rela-
tionships between the crystal physical and crystallographic coordinate systems are
given, e.g. in [35]. Nowadays, it is common to define the crystal physical coordinate
system as in Figure 1.3a, so that e,//a,, e;//a; , and e; = [e, X e,]. Nonetheless,
for the hexagonal cell setting case, it is more common to define the crystal physical
coordinate system as e;//a;, e;//a,, and e, = [e, X e;]. In any case, we discourage
the reader from making a blind assumption of one or another convention used
and recommend a critical inspection of every individual case. The cases of trigonal
crystals are particularly difficult since the crystallographic coordinate system a;,
a,, a, itself has two “standard” cell settings: primitive (a, + a, + a, is parallel to the
threefold axis) or R-centered (a, is parallel to the threefold axis).
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Table 1.3 Coordinate systems used for the description of crystal structures and properties.

Reciprocal
Coordinate system Crystallographic crystallographic Crystal physical
Designation for a,b,c a’b',c' x,y,z
the basis vectors or or or
a,,a,,a; aj,a;,a; e, e, e,
Metric Depends on the Depends on the Cartesian e,e; = 6
crystal system crystal system
Used for Description of Description of Physical properties
periodic structures diffraction pattern
of crystals and natural shapes
of crystalline
polyhedrons
The conventional Aligned to certain Related to the Attached to the
choice, orientation ~ symmetry elements crystallographic crystallographic
of basis vectors of the crystal lattice coordinate system coordinate system
e3 a3
as €3 a,
=2 .
a
e
1 e o
ay ay
aj
(@)  General convention (a) Used for hexagonal cell setting

Figure 1.3 Two conventional choices of crystal physical Cartesian coordinate system e, e,,
e; relative to the crystallographic a,, a,, a;: (a) general three-dimensional case where

e, |la, and e, || a;, (b) special convention, which is frequently used for hexagonal lattice
setting (in hexagonal and trigonal crystal classes), where e, || a, and e; || a;. Note that
special attention should be paid to the trigonal crystal classes 32 and 3m (where the two
standard orientations of the crystallographic coordinate system itself are possible).

Source: Semén Gorfman.

1.5.3 How to Use the Space Symmetry Group Information to Find
the List of Independent Piezoelectric Coefficients

The transformation of the coordinate systems, keeping the crystal structure invari-
ant, is contained in the information regarding the type of a space symmetry group.
There are 230 types of space symmetry groups describing three-dimensional periodic
crystal structures, all of which are listed in the International Tables for Crystallogra-
phy, Volume A [25]. Each symmetry operation includes the “rotation” and “transla-
tion” parts. The translation part is irrelevant for macroscopic physical properties: for
example, a “screw” axis or “glide” plane acts as a simple rotation axis and a mirror
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Table 1.4 The shapes of piezoelectric tensors for 20 piezoelectric crystal classes.
Piezoelectric tensor Conventional
Crystal Crystal (Number of independent choice of Cartesian
system class coefficients) coordinate system
1 Gy dyy dyy dig dyg €3 ag
Triclinic 1 dy d,, d,; d,, dys dyo| (18)
31 d32 d33 d34 d35 dSE
(2 a,
€4
ay
aj
0 0 0 d, 0 d a, € a,
Monoclinic 2 dy dy, dy; 0 d,, 0| (8)
0 0 0 d 0 d
34 36 s e
ag
d, d, d, 0 d, 0 a € a4
m 0 0 0 d, 0 dyf (10)
d31 d32 d33 0 d35 0 e3 ey m
ag
000d, 0 0
Orthorhombic 222 000 0 dy 0f®
000 0 0 dy
azles eya,
€4
a4
0 0 d, o0
mm2 0 0 d, 0 0| (¥
dy dy, dy; 00 ds|es €2
a
€4
ay
0 0 d
Tetragonal 4mm 0 0 dy, 00
d31 d31 d33 0 0

3
asle
v S2 a
€4
a

1
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Table 1.4 (Continued)
Piezoelectric tensor Conventional
Crystal Crystal (Number of independent choice of Cartesian
system class coefficients) coordinate system
000d, 0 0
422 000 0 —d, 0] M
0000 0 0 ades”
2 a,
€4
a4
000d, 0 0
2m 000 0 d, 0| ®@
000 0 0 dy
0 0 0 d, d, 0 as eq o o
4 0 0 0 d, -d, 0 ®
dy, dy dy; 0 0 0
€1
a
B 0 0 0 d, dg as e o a
4 0 0 —-dyy d, 0] ® - ;——>——
d31 _d31 0 0 das
€4
a4
dy, —dy 0 d, djg -2d, a3 A s a
Trigonal 3 -d,, d, 0 dg —d, -2d,| (6)
dy dy dy 00 0 ey €2
a4
dll dll 0 d14 0 0
32 0 0 0 0 —d, -2d,| (2
0 0 0 0 0 0

(Continued)
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Table 1.4 (Continued)
0 0 0 0 d, -2d,
3m -d,, d,, 0 ds 0 0 @
dy, dy dy; 0 0 0 a5 o5
as
€5
€1
ay
0 0 0 0 d,o0
Hexagonal 6mm 0 0 0 d, 0 of ®
d31 d31 d33 0O 0 O
a
3 g
e 2
a4
0oood, 0 0
622 000 0 —d, of
000 O 0 0
B d, -d,, 000 0
6m2 0 0 000 -2d,| (D
0 0O 000 O
' 3/€3 az.
e * 62
ay
0 0 0d, d o & o
6 0 0 0 d,—-d, ol ®
dy, dy dy; 00 0
e €2
ay
~ d, —d, 000 —2d, a 2
6 -d,, d,, 000 -2d,/|
0 0 000 O
e4 €2
a4
0o00d, 0 0
Cubic 432 000 0 d, O (1) The axes of Cartesian coordinate
23 system are parallel toa,, a, a,

000 0 0 d,
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plane for the physical properties. If all the “translation” components of the symmetry
operations are removed, then the 230 types of space symmetry groups are reduced to
32 types of point symmetry groups. These types of groups are called crystal classes.
11 of 32 crystal classes, known as Laue classes, and are centrosymmetric, ruling out
piezoelectricity straight away. For the remaining 21 non-centrosymmetric crystal
classes, the piezoelectricity must be analyzed according to the algorithm outlined
previously. Here, we restrict ourselves to the derivation of the piezoelectric coef-
ficients for all possible non-centrosymmetric crystal classes. The interested reader
may consult Nye’s dedicated book[12].

1.5.4 The Shapes of Piezoelectric Tensors for Different Crystal Classes

Table 1.4 shows the shapes of tensors of piezoelectric coefficients for 20 piezoelectric
crystal classes. The only non-centrosymmetric crystal class where all the piezoelec-
tric coefficients vanish is 432. The first column of Table 1.4 lists the crystal system
(crystal system is the symmetry group of the infinite crystal lattice without the unit
cell). The second column shows the International Hermann-Mauguin symbol for
the crystal classes. The last column adds some information about the assumed ori-
entation of the crystal’s physical coordinate system relative to the crystallographic
axes. It involves the drawing of the symmetry diagram so that the orientation of the
crystallographic and crystal physical coordinate axes can be related to the symmetry
elements of the crystal.

Some additional comments are in place here regarding the choice of the crystal
physical Cartesian coordinate system. The following transformation of the Cartesian
coordinate system does affect the numerical values of the “independent” piezoelec-
tric coefficients without changing the shape of the piezoelectric tensor itself.

o For the crystal class 1: any change of the coordinate system.

o For the crystal classes 2,3, 4, 4,6,6,4mm, 6mm: rotation around the symmetry axis
by an arbitrary angle.

o For the crystal class m: rotation around the normal to the mirror plane.

o For all crystal classes: inversion of the coordinate axes will invert all the piezoelec-
tric coefficients.
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