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Cartesian coordinate systems:

[T] =
⎛⎜⎜⎝

1 0 0
0 1 0
0 0 1

⎞⎟⎟⎠
(1.22)

Substituting (1.22) in (1.19), we can rewrite (1.19) as:

dijk = (−1)ndijk (1.23)

Here, n≤ 3 is the number of cases where any of the three indices is equal 3 (e.g.
n = 0 for d122, n = 1 for d123, or n = 2 for d323). Accordingly, the tensor of piezoelectric
coefficients in the matrix (Voigt notation) will take the form:

[d] =
⎛⎜⎜⎝

d11 d12 d13 0 0 d16
d21 d22 d23 0 0 d26
0 0 0 d34 d35 0

⎞⎟⎟⎠
(1.24)

with 10 independent piezoelectric coefficients.

1.5.2 The Choice of the Cartesian Coordinate System

According to (1.18), the values of piezoelectric coefficients depend on the choice
of the coordinate system. Therefore, every time when piezoelectric coefficients of a
material are reported or retrieved from a literature, it is crucial to know how the coor-
dinate system is chosen. All physical properties are described in Cartesian coordinate
systems and are commonly referred to as the crystal physical coordinate system. It
is imperative to understand that this system is not related to the experimental setup
but rather to the basis vectors of the crystal itself.

For single crystals, it is convenient to relate the axes of the crystal’s physical
coordinate system e1, e2, e3 to the axes of the crystallographic, a1, a2, a3 and the
reciprocal crystallographic coordinate systems a∗

1,a∗
2,a∗

3. The basis vectors of the
reciprocal coordinate system are related to that of the crystallographic coordinate
system by the scalar products aia∗

j = 𝛿ij. Table 1.3 summarizes these three types
of coordinate systems, including their metric (the lengths and the angles between
the basis vectors), their usage, and their conventional choice. The standard rela-
tionships between the crystal physical and crystallographic coordinate systems are
given, e.g. in [35]. Nowadays, it is common to define the crystal physical coordinate
system as in Figure 1.3a, so that e2//a2, e1∕∕a∗

1 , and e3 = [e1 × e2]. Nonetheless,
for the hexagonal cell setting case, it is more common to define the crystal physical
coordinate system as e3//a3, e1//a1, and e1 = [e2 × e3]. In any case, we discourage
the reader from making a blind assumption of one or another convention used
and recommend a critical inspection of every individual case. The cases of trigonal
crystals are particularly difficult since the crystallographic coordinate system a1,
a2, a3 itself has two “standard” cell settings: primitive (a1 +a2 +a3 is parallel to the
threefold axis) or R-centered (a3 is parallel to the threefold axis).
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Table 1.3 Coordinate systems used for the description of crystal structures and properties.

Coordinate system Crystallographic
Reciprocal
crystallographic Crystal physical

Designation for
the basis vectors

a,b,c
or
a1,a2,a3

a*,b*,c*

or
a∗
𝟏,a∗

𝟐,a∗
𝟑

x, y, z
or
e1, e2, e3

Metric Depends on the
crystal system

Depends on the
crystal system

Cartesian eiej = 𝛿ij

Used for Description of
periodic structures
of crystals

Description of
diffraction pattern
and natural shapes
of crystalline
polyhedrons

Physical properties

The conventional
choice, orientation
of basis vectors

Aligned to certain
symmetry elements
of the crystal lattice

Related to the
crystallographic
coordinate system

Attached to the
crystallographic
coordinate system

(a) General convention (a) Used for hexagonal cell setting

a1*
a1

a1

a3

a3

a2

a2

e2

e2

e1
e1

e3

e3

Figure 1.3 Two conventional choices of crystal physical Cartesian coordinate system e1, e2,
e3 relative to the crystallographic a1, a2, a3: (a) general three-dimensional case where
e2 ∥ a2 and e1 ∥ a∗

1, (b) special convention, which is frequently used for hexagonal lattice
setting (in hexagonal and trigonal crystal classes), where e1 ∥ a1 and e3 ∥ a3. Note that
special attention should be paid to the trigonal crystal classes 32 and 3m (where the two
standard orientations of the crystallographic coordinate system itself are possible).
Source: Semën Gorfman.

1.5.3 How to Use the Space Symmetry Group Information to Find
the List of Independent Piezoelectric Coefficients

The transformation of the coordinate systems, keeping the crystal structure invari-
ant, is contained in the information regarding the type of a space symmetry group.
There are 230 types of space symmetry groups describing three-dimensional periodic
crystal structures, all of which are listed in the International Tables for Crystallogra-
phy, Volume A [25]. Each symmetry operation includes the “rotation” and “transla-
tion” parts. The translation part is irrelevant for macroscopic physical properties: for
example, a “screw” axis or “glide” plane acts as a simple rotation axis and a mirror
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Table 1.4 The shapes of piezoelectric tensors for 20 piezoelectric crystal classes.

Crystal
system

Crystal
class

Piezoelectric tensor
(Number of independent
coefficients)

Conventional
choice of Cartesian
coordinate system

Triclinic 1
⎛⎜⎜⎜⎝

d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

⎞⎟⎟⎟⎠
(18)

a3

a2

a1

e3

e2

e1

a1*

Monoclinic 2
⎛⎜⎜⎜⎝

0 0 0 d14 0 d16

d21 d22 d23 0 d25 0
0 0 0 d34 0 d36

⎞⎟⎟⎟⎠
(8)

a3

a2 a1

e3

e2

e1

m
⎛⎜⎜⎜⎝

d11 d12 d13 0 d15 0
0 0 0 d24 0 d26

d31 d32 d33 0 d35 0

⎞⎟⎟⎟⎠
(10)

a3

a2 a1

me3

e2

e1

Orthorhombic 222
⎛⎜⎜⎜⎝

0 0 0 d14 0 0
0 0 0 0 d25 0
0 0 0 0 0 d36

⎞⎟⎟⎟⎠
(3)

a3 a2

a1

e3 e2

e1

mm2
⎛⎜⎜⎜⎝

0 0 0 0 d15 0
0 0 0 d24 0 0

d31 d32 d33 0 0 0

⎞⎟⎟⎟⎠
(5)

a3

a2

a1

e3 e2

e1

Tetragonal 4mm
⎛⎜⎜⎜⎝

0 0 0 0 d15 0
0 0 0 d15 0 0

d31 d31 d33 0 0 0

⎞⎟⎟⎟⎠
(3)

a3 a2

a1

e3 e2

e1

(Continued)
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Table 1.4 (Continued)

Crystal
system

Crystal
class

Piezoelectric tensor
(Number of independent
coefficients)

Conventional
choice of Cartesian
coordinate system

422
⎛⎜⎜⎜⎝

0 0 0 d14 0 0
0 0 0 0 −d14 0
0 0 0 0 0 0

⎞⎟⎟⎟⎠
(1)

a3 a2

a1

e3 e2

e1

42m
⎛⎜⎜⎜⎝

0 0 0 d14 0 0
0 0 0 0 d14 0
0 0 0 0 0 d36

⎞⎟⎟⎟⎠
(2)

a3 a2

a1

e3 e2

e1

4
⎛⎜⎜⎜⎝

0 0 0 d14 d15 0
0 0 0 d15 −d14 0

d31 d31 d33 0 0 0

⎞⎟⎟⎟⎠
(4)

a3 a2

a1

e3 e2

e1

4
⎛⎜⎜⎜⎝

0 0 0 d14 d15 0
0 0 0 −d15 d14 0

d31 −d31 0 0 0 d36

⎞⎟⎟⎟⎠
(4)

a3
a2

a1

e3 e2

e1

Trigonal 3
⎛⎜⎜⎜⎝

d11 −d11 0 d14 d15 −2d22

−d22 d22 0 d15 −d14 −2d11

d31 d31 d33 0 0 0

⎞⎟⎟⎟⎠
(6)

a3 a2

a1

e3

e2e1

32
⎛⎜⎜⎜⎝

d11 −d11 0 d14 0 0
0 0 0 0 −d14 −2d11

0 0 0 0 0 0

⎞⎟⎟⎟⎠
(2)

a3 a2

a1

e3

e2e1

(Continued)
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Table 1.4 (Continued)

3m
⎛⎜⎜⎜⎝

0 0 0 0 d15 −2d22

−d22 d22 0 d15 0 0
d31 d31 d33 0 0 0

⎞⎟⎟⎟⎠
(4)

a3 a2

a1

e3

e2
e1

Hexagonal 6mm
⎛⎜⎜⎜⎝

0 0 0 0 d15 0
0 0 0 d15 0 0

d31 d31 d33 0 0 0

⎞⎟⎟⎟⎠
(3)

a3 a2

a1

e3

e2e1

622
⎛⎜⎜⎜⎝

0 0 0 d14 0 0
0 0 0 0 −d14 0
0 0 0 0 0 0

⎞⎟⎟⎟⎠
(1)

a3 a2

a1

e3

e2e1

6m2
⎛⎜⎜⎜⎝

d11 −d11 0 0 0 0
0 0 0 0 0 −2d11

0 0 0 0 0 0

⎞⎟⎟⎟⎠
(1)

a3 a2

a1

e3

e2e1

6
⎛⎜⎜⎜⎝

0 0 0 d14 d15 0
0 0 0 d15 −d14 0

d31 d31 d33 0 0 0

⎞⎟⎟⎟⎠
(4)

a3 a2

a1

e3

e2e1

6
⎛⎜⎜⎜⎝

d11 −d11 0 0 0 −2d22

−d22 d22 0 0 0 −2d11

0 0 0 0 0 0

⎞⎟⎟⎟⎠
(2)

a3 a2

a1

e3

e2e1

Cubic 432
23

⎛⎜⎜⎜⎝

0 0 0 d14 0 0
0 0 0 0 d14 0
0 0 0 0 0 d14

⎞⎟⎟⎟⎠
(1) The axes of Cartesian coordinate

system are parallel to a1, a2, a3
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plane for the physical properties. If all the “translation” components of the symmetry
operations are removed, then the 230 types of space symmetry groups are reduced to
32 types of point symmetry groups. These types of groups are called crystal classes.
11 of 32 crystal classes, known as Laue classes, and are centrosymmetric, ruling out
piezoelectricity straight away. For the remaining 21 non-centrosymmetric crystal
classes, the piezoelectricity must be analyzed according to the algorithm outlined
previously. Here, we restrict ourselves to the derivation of the piezoelectric coef-
ficients for all possible non-centrosymmetric crystal classes. The interested reader
may consult Nye’s dedicated book[12].

1.5.4 The Shapes of Piezoelectric Tensors for Different Crystal Classes

Table 1.4 shows the shapes of tensors of piezoelectric coefficients for 20 piezoelectric
crystal classes. The only non-centrosymmetric crystal class where all the piezoelec-
tric coefficients vanish is 432. The first column of Table 1.4 lists the crystal system
(crystal system is the symmetry group of the infinite crystal lattice without the unit
cell). The second column shows the International Hermann–Mauguin symbol for
the crystal classes. The last column adds some information about the assumed ori-
entation of the crystal’s physical coordinate system relative to the crystallographic
axes. It involves the drawing of the symmetry diagram so that the orientation of the
crystallographic and crystal physical coordinate axes can be related to the symmetry
elements of the crystal.

Some additional comments are in place here regarding the choice of the crystal
physical Cartesian coordinate system. The following transformation of the Cartesian
coordinate system does affect the numerical values of the “independent” piezoelec-
tric coefficients without changing the shape of the piezoelectric tensor itself.

● For the crystal class 1: any change of the coordinate system.
● For the crystal classes 2,3, 4, 4, 6, 6, 4mm, 6mm∶ rotation around the symmetry axis

by an arbitrary angle.
● For the crystal class m: rotation around the normal to the mirror plane.
● For all crystal classes: inversion of the coordinate axes will invert all the piezoelec-

tric coefficients.
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