
| 125

Kapitel 7 KAPITEL 7

Daten importieren

Einführung
Mit Daten zu arbeiten, die von den R-Paketen bereitgestellt werden, ist eine groß-
artige Möglichkeit, die Tools der Data Science kennenzulernen. Doch an einem
gewissen Punkt möchten Sie das Gelernte auch auf Ihre eigenen Daten anwenden.
Dieses Kapitel beschäftigt sich nun mit den Grundlagen, Datendateien in R einzu-
lesen.

Speziell konzentriert es sich darauf, wie man einfache, rechteckige Textdateien
einliest. Los geht es mit einem praktischen Hinweis für den Umgang mit Features
wie Spaltennamen, Typen und fehlenden Daten. Dann erfahren Sie, wie man meh-
rere Dateien auf einmal einliest und Daten aus R in eine Datei schreibt. Schließlich
lernen Sie, wie Sie Dataframes in R manuell zusammenbauen.

Voraussetzungen
In diesem Kapitel lernen Sie, lineare Dateien mit dem Paket readr in R zu laden.
Dieses Paket ist Teil des Kern-Tidyverse:

library(tidyverse)

Daten aus einer Datei lesen
Zu Beginn konzentrieren wir uns auf den gebräuchlichsten Typ einer rechteckigen
Datendatei: CSV, was als Abkürzung für Comma-Separated Values (kommage-
trennte Werte) steht. Das folgende Beispiel zeigt, wie eine einfache CSV-Datei aus-
sieht. Die erste Zeile, häufig auch Header-Zeile oder Überschriftenzeile genannt,
gibt die Spaltennamen an, und in den folgenden sechs Zeilen sind die Daten ent-
halten. Die Spalten werden durch Kommata voneinander getrennt.

126 | Kapitel 7: Daten importieren

Student ID,Full Name,favourite.food,mealPlan,AGE
1,Sunil Huffmann,Strawberry yoghurt,Lunch only,4
2,Barclay Lynn,French fries,Lunch only,5
3,Jayendra Lyne,N/A,Breakfast and lunch,7
4,Leon Rossini,Anchovies,Lunch only,
5,Chidiegwu Dunkel,Pizza,Breakfast and lunch,five
6,Güvenç Attila,Ice cream,Lunch only,6

Tabelle 7-1 stellt dieselben Daten als Tabelle dar.

Diese Datei können wir mit read_csv() in R einlesen. Das erste Argument ist das
wichtigste: der Pfad zur Datei. Man kann sich den Pfad als die Adresse der Datei
vorstellen: Die Datei heißt students.csv und »wohnt« im Ordner data.

students <- read_csv("data/students.csv")
#> Rows: 6 Columns: 5
#> ── Column specification ───
#> Delimiter: ","
#> chr (4): Full Name, favourite.food, mealPlan, AGE
#> dbl (1): Student ID
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this
message.

Der obige Code funktioniert, wenn Sie die Datei students.csv in einem Ordner data
in Ihrem Projekt abgelegt haben. Die Datei students.csv können Sie von https://
oreil.ly/GDubb herunterladen oder direkt von der angegebenen URL lesen:

students <- read_csv("https://pos.it/r4ds-students-csv")

Die Funktion read_csv() gibt eine Meldung zurück mit der Anzahl der Datenzei-
len und -spalten, dem verwendeten Trennzeichen und den Spaltenspezifikationen
(Namen der Spalten, organisiert nach dem Typ der in den Spalten enthaltenen
Daten). Außerdem erfahren Sie, wie sich die vollständige Spaltenspezifikation
abrufen lässt und wie Sie diese Meldung unterdrücken können. Die Meldung ist
integraler Bestandteil von readr, und wir kommen im Abschnitt »Spaltentypen
steuern« auf Seite 132 darauf zurück.

Tabelle 7-1: Daten aus der Datei students.csv in Form einer Tabelle

Student ID Full Name favourite.food mealPlan AGE

1 Sunil Huffmann Strawberry yoghurt Lunch only 4

2 Barclay Lynn French fries Lunch only 5

3 Jayendra Lyne N/A Breakfast and lunch 7

4 Leon Rossini Anchovies Lunch only NA

5 Chidiegwu Dunkel Pizza Breakfast and lunch five

6 Güvenç Attila Ice cream Lunch only 6

 Daten aus einer Datei lesen | 127

Praktischer Ratschlag
Nachdem Sie Daten eingelesen haben, besteht der erste Schritt in der Regel darin,
sie in bestimmter Weise umzuwandeln, um sie für die weitere Analyse leichter ver-
arbeiten zu können. Sehen wir uns in diesem Sinne noch einmal die students-
Daten an:

students
#> # A tibble: 6 × 5
#> `Student ID` `Full Name` favourite.food mealPlan AGE
#> <dbl> <chr> <chr> <chr> <chr>
#> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4
#> 2 2 Barclay Lynn French fries Lunch only 5
#> 3 3 Jayendra Lyne N/A Breakfast and lunch 7
#> 4 4 Leon Rossini Anchovies Lunch only <NA>
#> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch five
#> 6 6 Güvenç Attila Ice cream Lunch only 6

In der Spalte favourite.food stehen verschiedene Lebensmittel sowie die Zeichen-
folge »N/A«, die ein richtiges NA sein sollte, das R als not available (nicht verfüg-
bar) erkennt. Das ist etwas, das wir mit dem Argument na angehen können.
Standardmäßig erkennt die Funktion read_csv() nur leere Zeichenfolgen ("") in
diesem Datenset als NA-Werte. Wir möchten aber, dass sie auch den String "N/A"
erkennt:

students <- read_csv("data/students.csv", na = c("N/A", ""))

students
#> # A tibble: 6 × 5
#> `Student ID` `Full Name` favourite.food mealPlan AGE
#> <dbl> <chr> <chr> <chr> <chr>
#> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4
#> 2 2 Barclay Lynn French fries Lunch only 5
#> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7
#> 4 4 Leon Rossini Anchovies Lunch only <NA>
#> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch five
#> 6 6 Güvenç Attila Ice cream Lunch only 6

Sicherlich haben Sie bemerkt, dass die Spalten Student ID und Full Name von
Backticks umgeben sind. Das liegt daran, dass sie Leerzeichen enthalten und
damit die üblichen Regeln von R für Variablennamen verletzen. Um auf diese
Variablen zu verweisen, müssen Sie sie in Backticks (`) einschließen:

students |>
 rename(
 student_id = `Student ID`,
 full_name = `Full Name`
)
#> # A tibble: 6 × 5
#> student_id full_name favourite.food mealPlan AGE
#> <dbl> <chr> <chr> <chr> <chr>
#> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4
#> 2 2 Barclay Lynn French fries Lunch only 5

128 | Kapitel 7: Daten importieren

#> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7
#> 4 4 Leon Rossini Anchovies Lunch only <NA>
#> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch five
#> 6 6 Güvenç Attila Ice cream Lunch only 6

Als alternativer Ansatz bietet sich die Funktion janitor::clean_names() an, um
mithilfe einer Heuristik alle Namen auf einmal in Snake Case umzuwandeln:1

students |> janitor::clean_names()
#> # A tibble: 6 × 5
#> student_id full_name favourite_food meal_plan age
#> <dbl> <chr> <chr> <chr> <chr>
#> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4
#> 2 2 Barclay Lynn French fries Lunch only 5
#> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7
#> 4 4 Leon Rossini Anchovies Lunch only <NA>
#> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch five
#> 6 6 Güvenç Attila Ice cream Lunch only 6

Nach dem Einlesen der Daten ist es häufig ebenfalls erforderlich, die Variablenty-
pen zu betrachten. Zum Beispiel ist meal_plan eine kategoriale Variable mit einem
bekannten Satz möglicher Werte, die in R als Faktor dargestellt werden sollte.

students |>
 janitor::clean_names() |>
 mutate(meal_plan = factor(meal_plan))
#> # A tibble: 6 × 5
#> student_id full_name favourite_food meal_plan age
#> <dbl> <chr> <chr> <fct> <chr>
#> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4
#> 2 2 Barclay Lynn French fries Lunch only 5
#> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7
#> 4 4 Leon Rossini Anchovies Lunch only <NA>
#> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch five
#> 6 6 Güvenç Attila Ice cream Lunch only 6

Beachten Sie, dass die Werte in der Variablen meal_plan gleich geblieben sind, aber
der Variablentyp, der unter dem Variablennamen angegeben ist, hat sich von Zei-
chen (<chr>) in Faktor (<fct>) geändert. Kapitel 16 geht näher auf Faktoren ein.

Bevor Sie diese Daten analysieren, werden Sie wahrscheinlich die Spalten age und
id bereinigen wollen. Derzeit ist age eine Zeichenvariable, weil eine der Beobach-
tungen als Zahlwort five ausgeschrieben ist statt als Ziffer 5. Wie sich derartige
Probleme korrigieren lassen, besprechen wir ausführlich in Kapitel 20.

students <- students |>
 janitor::clean_names() |>
 mutate(
 meal_plan = factor(meal_plan),
 age = parse_number(if_else(age == "five", "5", age))
)

1 Das Paket janitor (https://oreil.ly/-J8GX) ist nicht im Tidyverse enthalten, bietet aber praktische
Funktionen für die Datenbereinigung und funktioniert auch gut in Daten-Pipelines, die |> verwenden.

 Daten aus einer Datei lesen | 129

students
#> # A tibble: 6 × 5
#> student_id full_name favourite_food meal_plan age
#> <dbl> <chr> <chr> <fct> <dbl>
#> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4
#> 2 2 Barclay Lynn French fries Lunch only 5
#> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7
#> 4 4 Leon Rossini Anchovies Lunch only NA
#> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch 5
#> 6 6 Güvenç Attila Ice cream Lunch only 6

Neu ist hier die Funktion if_else(), die drei Argumente hat. Das erste Argument
test sollte ein logischer Vektor sein. Das Ergebnis enthält den Wert des zweiten
Arguments, yes, wenn test gleich TRUE ist, und den Wert des dritten Arguments,
no, wenn der Test FALSE liefert. Hier sagen wir: Wenn age den String "five" ent-
hält, mache "5" daraus, und wenn nicht, bleibt age, wie es war. Mehr über if_
else() und logische Vektoren lernen Sie in Kapitel 12.

Andere Argumente
Es gibt noch eine Reihe weiterer wichtiger Argumente, die wir erwähnen müssen,
und sie lassen sich besser vorführen, wenn wir uns zunächst einen praktischen
Trick ansehen: Die Funktion read_csv() kann Textzeichenfolgen lesen, die Sie
erzeugt und wie eine CSV-Datei formatiert haben:

read_csv(
 "a,b,c
 1,2,3
 4,5,6"
)
#> # A tibble: 2 × 3
#> a b c
#> <dbl> <dbl> <dbl>
#> 1 1 2 3
#> 2 4 5 6

Normalerweise verwendet read_csv() die erste Zeile der Daten für die Spaltenna-
men, was eine gängige Konvention ist. Es ist auch nicht ungewöhnlich, dass am
Anfang der Datei einige Zeilen mit Metadaten enthalten sind. Die ersten n Zeilen
können Sie mit skip = n überspringen, oder Sie können mit comment = "#" alle Zei-
len auslassen, die beispielsweise mit # beginnen:

read_csv(
 "The first line of metadata
 The second line of metadata
 x,y,z
 1,2,3", skip = 2
)
#> # A tibble: 1 × 3
#> x y z
#> <dbl> <dbl> <dbl>
#> 1 1 2 3

130 | Kapitel 7: Daten importieren

read_csv(
 "# A comment I want to skip
 x,y,z
 1,2,3", comment = "#"
)
#> # A tibble: 1 × 3
#> x y z
#> <dbl> <dbl> <dbl>
#> 1 1 2 3

Es kann auch sein, dass die Daten keine Spaltennamen haben. Mit col_names =
FALSE weisen Sie read_csv() an, die erste Zeile nicht als Überschriftenzeile (Hea-
der) zu verarbeiten, sondern sie stattdessen sequenziell von X1 bis Xn zu beschriften:

read_csv(
 "1,2,3
 4,5,6",
 col_names = FALSE
)
#> # A tibble: 2 × 3
#> X1 X2 X3
#> <dbl> <dbl> <dbl>
#> 1 1 2 3
#> 2 4 5 6

Alternativ können Sie col_names einen Zeichenvektor übergeben, der für die Spal-
tennamen verwendet wird:

read_csv(
 "1,2,3
 4,5,6",
 col_names = c("x", "y", "z")
)
#> # A tibble: 2 × 3
#> x y z
#> <dbl> <dbl> <dbl>
#> 1 1 2 3
#> 2 4 5 6

Wenn Sie diese Argumente kennen, sind Sie in der Lage, die meisten in der Praxis
vorkommenden CSV-Dateien einzulesen. (Für die übrigen Varianten müssen Sie
Ihre .csv-Datei sorgfältig inspizieren und die Dokumentation für die vielen ande-
ren Argumente von read_csv() studieren.)

Andere Dateitypen
Sobald Sie read_csv() beherrschen, ist es sehr einfach, die anderen Funktionen
von readr zu verwenden. Sie müssen lediglich wissen, welche Funktion jeweils
infrage kommt:

 Daten aus einer Datei lesen | 131

read_csv2()
Liest Dateien ein, deren Felder durch Semikola (;) statt durch Kommata (,)
getrennt sind. Derartige Dateien sind in Ländern üblich, in denen das Komma
als Dezimaltrennzeichen dient.

read_tsv()
Liest Dateien ein, deren Felder durch Tabulatoren getrennt sind.

read_delim()
Liest Dateien mit einem beliebigen Trennzeichen ein, wobei versucht wird,
das Trennzeichen automatisch zu erraten, wenn Sie es nicht angeben.

read_fwf()
Liest Dateien mit Feldern fester Breite ein. Die Felder können Sie mit fwf_
widths() durch ihre Breite oder mit fwf_positions() durch ihre Positionen
spezifizieren.

read_table()
Liest eine gebräuchliche Variation von Dateien mit fester Breite ein, wobei die
Spalten durch Leerzeichen getrennt sind.

read_log()
Liest Protokolldateien im Apache-Stil ein.

Übungen
1. Mit welcher Funktion würden Sie eine Datei einlesen, deren Felder durch |

getrennt sind?

2. Welche anderen Argumente außer file, skip und comment haben die Funktio-
nen read_csv() und read_tsv() gemein?

3. Was sind die wichtigsten Argumente der Funktion read_fwf()?

4. Manchmal enthalten CSV-Dateien Zeichenfolgen mit Kommata. Um Prob-
leme zu vermeiden, müssen diese Kommata in Anführungszeichen einge-
schlossen werden, und zwar in einfache (') oder doppelte ("). Standardmäßig
geht read_csv() davon aus, dass es sich um doppelte Anführungszeichen (")
handelt. Welches Argument müssen Sie bei read_csv() angeben, um den fol-
genden Text in einen Dataframe einzulesen?

"x,y\n1,'a,b'"

5. Ermitteln Sie, was bei den folgenden Inline-CSV-Dateien jeweils nicht stimmt.
Was passiert, wenn Sie den Code ausführen?

read_csv("a,b\n1,2,3\n4,5,6")
read_csv("a,b,c\n1,2\n1,2,3,4")
read_csv("a,b\n\"1")
read_csv("a,b\n1,2\na,b")
read_csv("a;b\n1;3")

132 | Kapitel 7: Daten importieren

6. Üben Sie, sich auf nicht syntaktische Namen im folgenden Dataframe zu
beziehen, indem Sie

a. die Variable namens 1 extrahieren,

b. ein Streudiagramm von 1 gegen 2 erstellen,

c. eine neue Spalte namens 3 erzeugen, die 2 geteilt durch 1 ist,

d. die Spalten in one, two und three umbenennen:
annoying <- tibble(
`1` = 1:10,
`2` = `1` * 2 + rnorm(length(`1`))
)

Spaltentypen steuern
Da eine CSV-Datei keine Informationen über den Typ jeder Variablen enthält (d.h.,
ob sie einen logischen Wert, eine Zahl, eine Zeichenfolge usw. darstellt), versucht
readr, den Typ zu erraten. Dieser Abschnitt beschreibt, wie das Erraten funktio-
niert, wie man einige häufige Probleme löst, die zum Scheitern führen, und wie man
bei Bedarf die Spaltentypen selbst bereitstellen kann. Zum Schluss stellen wir noch
einige allgemeine Strategien vor, die nützlich sind, wenn readr katastrophal versagt
und Sie mehr Einblick in die Struktur Ihrer Datei benötigen.

Typen erraten
Das Paket readr verwendet eine Heuristik, um die Spaltentypen herauszufinden.
Für jede Spalte holt es die Werte von 1.000 Zeilen2 in gleichmäßigen Abständen
von der ersten bis zur letzten Zeile und ignoriert dabei fehlende Werte. Anschlie-
ßend arbeitet es die folgenden Fragen ab:

• Enthält sie nur F, T, FALSE oder TRUE (ohne Beachtung der Groß-/Kleinschrei-
bung)? Wenn ja, handelt es sich um einen logischen Wert.

• Enthält sie nur Zahlen (z. B. 1, -4.5, 5e6, Inf)? Wenn ja, handelt es sich um
eine Zahl.

• Entspricht sie dem Standard ISO8601? Wenn ja, handelt es sich um ein
Datum oder um ein Datum mit Uhrzeit. (Auf Datums-/Zeitwerte kommen wir
ausführlich in Kapitel 17 im Abschnitt »Datums-/Zeitwerte erzeugen« auf
Seite 326 zurück.)

• Andernfalls muss es sich um eine Zeichenfolge handeln.

Dieses Verhalten können Sie mit diesem einfachen Beispiel nachvollziehen:

read_csv("
 logical,numeric,date,string

2 Den Standardwert 1.000 können Sie mit dem Argument guess_max überschreiben.

 Spaltentypen steuern | 133

 TRUE,1,2021-01-15,abc
 false,4.5,2021-02-15,def
 T,Inf,2021-02-16,ghi
")
#> # A tibble: 3 × 4
#> logical numeric date string
#> <lgl> <dbl> <date> <chr>
#> 1 TRUE 1 2021-01-15 abc
#> 2 FALSE 4.5 2021-02-15 def
#> 3 TRUE Inf 2021-02-16 ghi

Diese Heuristik funktioniert gut, wenn das Datenset sauber ist, doch in der Praxis
werden Sie auf eine Reihe von seltsamen und ungewöhnlichen Fehlern stoßen.

Fehlende Werte, Spaltentypen und Probleme
Eine Spaltenerkennung scheitert vor allem dann, wenn eine Spalte unerwartete
Werte enthält. Dann bekommen Sie eine Zeichenspalte anstelle eines spezifische-
ren Typs. Eine der häufigsten Ursachen dafür ist ein fehlender Wert, der mit etwas
anderem als dem von readr erwarteten NA erfasst wurde.

Nehmen Sie diese einfache einspaltige CSV-Datei als Beispiel:

simple_csv <- "
 x
 10
 .
 20
 30"

Wenn wir die Datei ohne zusätzliche Argumente einlesen, wird x zu einer Zei-
chenspalte:

read_csv(simple_csv)
#> # A tibble: 4 × 1
#> x
#> <chr>
#> 1 10
#> 2 .
#> 3 20
#> 4 30

In diesem kleinen Datenset können Sie den fehlenden Wert – durch einen Punkt (.)
dargestellt – leicht erkennen. Doch wie sieht es aus bei Tausenden von Zeilen mit
nur wenigen fehlenden Werten, die durch Punkte dargestellt werden? Man könnte
readr mitteilen, dass x eine numerische Spalte ist, und dann sehen, wo das Einle-
sen versagt. Hierfür weisen Sie dem Argument col_types eine benannte Liste zu,
in der die Namen den Spaltennamen in der CSV-Datei entsprechen:

df <- read_csv(
 simple_csv,
 col_types = list(x = col_double())
)

134 | Kapitel 7: Daten importieren

#> Warning: One or more parsing issues, call `problems()` on your data frame for
#> details, e.g.:
#> dat <- vroom(...)
#> problems(dat)

Jetzt meldet read_csv(), dass es ein Problem gibt, und sagt uns, dass wir mit pro
blems() mehr herausfinden können:

problems(df)
#> # A tibble: 1 × 5
#> row col expected actual file
#> <int> <int> <chr> <chr> <chr>
#> 1 3 1 a double . /private/tmp/RtmpAYlSop/file392d445cf269

Wir erfahren nun, dass es ein Problem in Zeile 3, Spalte 1 gibt, wo readr einen
Wert vom Typ double erwartet, aber einen Punkt (.) vorgefunden hat. Das legt
nahe, dass dieses Datenset fehlende Werte mit einem Punkt kennzeichnet. Also
setzen wir na = ".". Die automatische Typherleitung ist nun erfolgreich und liefert
uns die numerische Spalte, die wir haben wollten:

read_csv(simple_csv, na = ".")
#> # A tibble: 4 × 1
#> x
#> <dbl>
#> 1 10
#> 2 NA
#> 3 20
#> 4 30

Spaltentypen
Im Paket readr können Sie aus insgesamt neun Spaltentypen wählen:

• col_logical() und col_double() lesen logische Werte und Realzahlen. Man
benötigt sie nur selten (außer wie oben gezeigt), da readr normalerweise sol-
che Typen automatisch erkennt.

• col_integer() liest Ganzzahlen. In diesem Buch unterscheiden wir nur selten
zwischen Ganzzahlen und Gleitkommazahlen (double), da sie funktional äqui-
valent sind. Allerdings kann das explizite Lesen von Ganzzahlen gelegentlich
nützlich sein, da sie gegenüber Gleitkommazahlen nur die Hälfte des Spei-
chers belegen.

• col_character() liest Zeichenfolgen. Dies kann nützlich sein, wenn zum Bei-
spiel eine Spalte einen numerischen Bezeichner verkörpert, d.h. eine lange
Folge von Ziffern, die ein Objekt identifizieren, aber in mathematischen Ope-
rationen nicht sinnvoll sind. Beispiele hierfür sind Telefonnummern, Sozial-
versicherungsnummern, Kreditkartennummern usw.

• col_factor(), col_date() und col_datetime() erzeugen Faktoren, Datums-
werte und Datums-/Zeitwerte. Mehr dazu erfahren Sie, wenn wir in den Kapi-
teln 16 und 17 auf diese Datentypen zu sprechen kommen.

 Daten aus mehreren Dateien einlesen | 135

• col_number() ist ein toleranter numerischer Parser, der nicht numerische
Komponenten ignoriert und besonders nützlich ist für Währungen. Mehr
dazu lesen Sie in Kapitel 13.

• col_skip() überspringt eine Spalte, die auch nicht in das Ergebnis aufgenom-
men wird. Dies kann zum Beispiel Zeit sparen, wenn Sie sehr große CSV-
Dateien einlesen müssen, aber nur einige der Spalten benötigen.

Es ist auch möglich, die Standardspalte zu überschreiben, indem Sie von list() zu
cols() wechseln und .default angeben:

another_csv <- "
x,y,z
1,2,3"

read_csv(
 another_csv,
 col_types = cols(.default = col_character())
)
#> # A tibble: 1 × 3
#> x y z
#> <chr> <chr> <chr>
#> 1 1 2 3

Eine andere nützliche Hilfsfunktion ist cols_only(), die nur die angegebene(n)
Spalte(n) einliest:

read_csv(
 another_csv,
 col_types = cols_only(x = col_character())
)
#> # A tibble: 1 × 1
#> x
#> <chr>
#> 1 1

Daten aus mehreren Dateien einlesen
Manchmal sind Ihre Daten auf mehrere Dateien verteilt, anstatt in einer einzigen
Datei enthalten zu sein. Ein Beispiel hierfür sind monatliche Umsatzdaten, wobei
die Daten für jeden Monat in einer eigenen Datei liegen: 01-sales.csv für Januar,
02-sales.csv für Februar und 03-sales.csv für März. Mit read_csv() können Sie
diese Daten auf einmal einlesen und sie in einem einzelnen Dataframe übereinan-
derstapeln.

sales_files <- c("data/01-sales.csv", "data/02-sales.csv", "data/03-sales.csv")
read_csv(sales_files, id = "file")
#> # A tibble: 19 × 6
#> file month year brand item n
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 data/01-sales.csv January 2019 1 1234 3
#> 2 data/01-sales.csv January 2019 1 8721 9

136 | Kapitel 7: Daten importieren

#> 3 data/01-sales.csv January 2019 1 1822 2
#> 4 data/01-sales.csv January 2019 2 3333 1
#> 5 data/01-sales.csv January 2019 2 2156 9
#> 6 data/01-sales.csv January 2019 2 3987 6
#> # … with 13 more rows

Auch hier funktioniert der obige Code nur dann, wenn Sie die CSV-Dateien in
einem Ordner data in Ihrem Projekt abgelegt haben. Diese drei Dateien können
Sie von https://oreil.ly/jVd8o, https://oreil.ly/RYsgM und https://oreil.ly/4uZOm
herunterladen oder sie wie folgt direkt einlesen:

sales_files <- c(
 "https://pos.it/r4ds-01-sales",
 "https://pos.it/r4ds-02-sales",
 "https://pos.it/r4ds-03-sales"
)
read_csv(sales_files, id = "file")

Das Argument id fügt eine neue Spalte namens file in den resultierenden Data-
frame ein. In ihr ist die Datei angegeben, aus der die Daten stammen. Das ist vor
allem dann hilfreich, wenn die einzulesenden Dateien keine Identifizierungsspalte
haben, die es erlauben würde, die Beobachtungen zu ihren ursprünglichen Quel-
len zurückzuverfolgen.

Wenn Sie viele Dateien einlesen wollen, kann es recht umständlich sein, ihre
Namen als Liste zu schreiben. Stattdessen können Sie die Basisfunktion list.
files() verwenden, die Ihnen die gewünschten Dateien anhand eines Musters in
den Dateinamen zusammensucht. Mehr über derartige Muster lernen Sie in Kapi-
tel 15.

sales_files <- list.files("data", pattern = "sales\\.csv$", full.names = TRUE)
sales_files
#> [1] "data/01-sales.csv" "data/02-sales.csv" "data/03-sales.csv"

In eine Datei schreiben
Das Paket readr bringt ebenfalls zwei nützliche Funktionen mit, um Daten auf
einen Datenträger zu schreiben: write_csv() und write_tsv(). Die wichtigsten
Argumente dieser Funktionen sind x (der zu speichernde Dataframe) und file
(der Ort, an dem die Datei zu speichern ist). Außerdem können Sie mit na festle-
gen, wie fehlende Werte gespeichert werden sollen, und mit append, ob Sie den
Dataframe an eine vorhandene Datei anfügen wollen.

write_csv(students, "students.csv")

Lesen wir nun diese CSV-Datei erneut ein. Beachten Sie, dass die Informationen
über die Variablentypen, die Sie eben eingerichtet haben, verloren gehen, wenn Sie
den Dataframe als CSV speichern. Somit stehen Sie wieder am Anfang und müssen
eine reine Textdatei einlesen:

 In eine Datei schreiben | 137

students
#> # A tibble: 6 × 5
#> student_id full_name favourite_food meal_plan age
#> <dbl> <chr> <chr> <fct> <dbl>
#> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4
#> 2 2 Barclay Lynn French fries Lunch only 5
#> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7
#> 4 4 Leon Rossini Anchovies Lunch only NA
#> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch 5
#> 6 6 Güvenç Attila Ice cream Lunch only 6
write_csv(students, "students-2.csv")
read_csv("students-2.csv")
#> # A tibble: 6 × 5
#> student_id full_name favourite_food meal_plan age
#> <dbl> <chr> <chr> <chr> <dbl>
#> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4
#> 2 2 Barclay Lynn French fries Lunch only 5
#> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7
#> 4 4 Leon Rossini Anchovies Lunch only NA
#> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch 5
#> 6 6 Güvenç Attila Ice cream Lunch only 6

Deshalb sind CSV-Dateien nicht so recht geeignet, um Zwischenergebnisse zu
speichern – Sie müssen die Spaltenspezifikation jedes Mal erneut durchführen,
wenn Sie den Dataframe laden. Hierzu gibt es zwei Alternativen:

• write_rds() und read_rds() sind einheitliche Wrapper um die Basisfunktio-
nen readRDS() und saveRDS(). Diese Funktionen speichern die Daten in dem
R-eigenen Binärformat namens RDS. Wenn Sie also das Objekt zurückladen,
dann laden Sie genau das gleiche R-Objekt zurück, das Sie gespeichert haben.

write_rds(students, "students.rds")
read_rds("students.rds")
#> # A tibble: 6 × 5
#> student_id full_name favourite_food meal_plan age
#> <dbl> <chr> <chr> <fct> <dbl>
#> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4
#> 2 2 Barclay Lynn French fries Lunch only 5
#> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7
#> 4 4 Leon Rossini Anchovies Lunch only NA
#> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch 5
#> 6 6 Güvenç Attila Ice cream Lunch only 6

• Das Paket arrow erlaubt es, Dateien im Datendateiformat Parquet zu lesen und
zu schreiben. Dieses schnelle, binäre Dateiformat lässt sich über Programmier-
sprachen hinweg einsetzen. Auf das Paket arrow kommen wir ausführlich in
Kapitel 22 zurück.

library(arrow)
write_parquet(students, "students.parquet")
read_parquet("students.parquet")
#> # A tibble: 6 × 5
#> student_id full_name favourite_food meal_plan age
#> <dbl> <chr> <chr> <fct> <dbl>

138 | Kapitel 7: Daten importieren

#> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4
#> 2 2 Barclay Lynn French fries Lunch only 5
#> 3 3 Jayendra Lyne NA Breakfast and lunch 7
#> 4 4 Leon Rossini Anchovies Lunch only NA
#> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch 5
#> 6 6 Güvenç Attila Ice cream Lunch only 6

Parquet ist in der Regel viel schneller als RDS und lässt sich auch außerhalb von R
einsetzen. Allerdings erfordert es das Paket arrow.

Dateneingabe
Manchmal müssen Sie ein Tibble »manuell« zusammenstellen, indem Sie ein
wenig Dateieingabe in Ihrem R-Skript praktizieren. Hierbei helfen Ihnen zwei
nützliche Funktionen, die sich darin unterscheiden, ob das Tibble spalten- oder
zeilenorientiert ist. Die Funktion tibble() arbeitet spaltenorientiert:

tibble(
x = c(1, 2, 5),
y = c("h", "m", "g"),
z = c(0.08, 0.83, 0.60)
)
#> # A tibble: 3 × 3
#> x y z
#> <dbl> <chr> <dbl>
#> 1 1 h 0.08
#> 2 2 m 0.83
#> 3 5 g 0.6

Wenn die Daten spaltenorientiert angeordnet sind, lässt sich schwerer erkennen,
welche Beziehungen zwischen den Zeilen bestehen. Eine Alternative ist also trib
ble(), kurz für transposed tibble, mit dem Sie Ihre Daten zeilenweise anordnen
können. Die Funktion tribble() ist auf die Dateneingabe im Code angepasst:
Spaltenüberschriften beginnen mit einer Tilde (~), und die Einträge werden durch
Kommata getrennt. Dadurch ist es möglich, kleine Datenmengen in einer gut les-
baren Form anzuordnen:

tribble(
 ~x, ~y, ~z,
 1, "h", 0.08,
 2, "m", 0.83,
 5, "g", 0.60
)
#> # A tibble: 3 × 3
#> x y z
#> <chr> <dbl> <dbl>
#> 1 1 h 0.08
#> 2 2 m 0.83
#> 3 5 g 0.6

 Zusammenfassung | 139

Zusammenfassung
In diesem Kapitel haben Sie gelernt, wie Sie CSV-Dateien mit read_csv() laden
und Ihre eigene Dateneingabe mit tibble() und tribble() realisieren. Es wurde
gezeigt, wie CSV-Dateien funktionieren, auf welche Probleme Sie möglicherweise
stoßen und wie Sie diese lösen können. In diesem Buch werden wir noch mehr-
mals auf den Datenimport zurückkommen: In Kapitel 20 laden Sie Daten aus
Excel und Google Sheets, in Kapitel 21 aus Datenbanken, in Kapitel 22 aus Par-
quet-Dateien, in Kapitel 23 von JSON und in Kapitel 24 von Websites.

Wir sind fast am Ende dieses Abschnitts des Buchs angelangt, aber es gibt noch
ein wichtiges letztes Thema zu behandeln: wie man Hilfe bekommt. Im nächsten
Kapitel erfahren Sie, wo Sie am besten nach Hilfe suchen können und wie Sie ein
Reprex erstellen, um die Chancen auf gute Hilfe zu maximieren, und Sie erhalten
einige allgemeine Ratschläge dazu, wie Sie in der Welt von R auf dem Laufenden
bleiben können.

| 5

Inhalt

Einführung . 13

Teil I Gesamtbild

1 Datenvisualisierung . 29
Einführung . 29
Erste Schritte . 30
Zielsetzung . 32
ggplot2-Aufrufe . 42
Verteilungen visualisieren . 42
Beziehungen visualisieren . 46
Diagramme speichern . 53
Häufige Probleme . 54
Zusammenfassung . 55

2 Workflow: Grundlagen . 57
Grundlagen der Codierung . 57
Kommentare . 58
Was macht einen Namen aus? . 59
Funktionen aufrufen . 60
Zusammenfassung . 62

3 Datentransformation . 63
Einführung . 63
Voraussetzungen . 63
Zeilen . 66
Spalten . 71
Die Pipe . 76

6 | Inhalt

Gruppen . 78
Fallstudie: Aggregate und Stichprobengröße . 85
Zusammenfassung . 87

4 Workflow: Programmierstil . 89
Namen . 90
Leerzeichen . 90
Pipes . 91
ggplot2 . 93
Abschnittskommentare . 93
Übungen . 94
Zusammenfassung . 94

5 Datenaufbereitung . 95
Einführung . 95
Aufbereitete Daten . 96
Daten länger machen . 99
Daten breiter machen . 108
Zusammenfassung . 112

6 Workflow: Skripte und Projekte . 113
Skripte . 113
Projekte . 117
Übungen . 122
Zusammenfassung . 122

7 Daten importieren . 125
Einführung . 125
Daten aus einer Datei lesen . 125
Spaltentypen steuern . 132
Daten aus mehreren Dateien einlesen . 135
In eine Datei schreiben . 136
Dateneingabe . 138
Zusammenfassung . 139

8 Workflow: Hilfe abrufen . 141
Google ist Ihr Freund . 141
Ein Reprex erstellen . 142
Sich selbst einbringen . 144
Zusammenfassung . 144

Inhalt | 7

Teil II Visualisieren

9 Datenvisualisierung . 147
Einführung . 147
Ästhetische Zuordnungen . 148
Geometrische Objekte . 152
Facetten . 158
Statistische Transformationen . 160
Positionsanpassungen . 164
Koordinatensysteme . 168
Die geschichtete Grammatik der grafischen Darstellung 170
Zusammenfassung . 171

10 Explorative Datenanalyse . 173
Einführung . 173
Fragen . 174
Variation . 175
Ungewöhnliche Werte . 179
Kovariation . 182
Muster und Modelle . 192
Zusammenfassung . 195

11 Kommunikation . 197
Einführung . 197
Beschriftungen . 198
Anmerkungen . 200
Skalen . 205
Themen . 220
Layout . 223
Zusammenfassung . 227

Teil III Transformieren

12 Logische Vektoren . 231
Einführung . 231
Vergleiche . 232
Boolesche Algebra . 236
Zusammenfassungen . 239
Bedingte Transformationen . 242
Zusammenfassung . 246

8 | Inhalt

13 Zahlen . 247
Einführung . 247
Zahlen erzeugen . 247
Zähler . 248
Numerische Transformationen . 250
Zahlen in Bereiche aufteilen . 256
Allgemeine Transformationen . 257
Numerische Zusammenfassungen . 261
Zusammenfassung . 267

14 Strings . 269
Einführung . 269
Einen String erzeugen . 270
Viele Strings aus Daten erstellen . 272
Daten aus Strings extrahieren . 275
Buchstaben . 281
Nicht englischer Text . 283
Zusammenfassung . 286

15 Reguläre Ausdrücke . 287
Einführung . 287
Muster – Grundlagen . 288
Wichtige Funktionen . 290
Details zu Mustern . 295
Mustersteuerung . 302
Praxis . 304
Reguläre Ausdrücke an anderen Stellen . 309
Zusammenfassung . 311

16 Faktoren . 313
Einführung . 313
Faktoren-Basics . 313
General Social Survey . 315
Faktorreihenfolge ändern . 316
Faktorlevels ändern . 321
Geordnete Faktoren . 323
Zusammenfassung . 324

17 Datum und Uhrzeit . 325
Einführung . 325
Datums-/Zeitwerte erzeugen . 326
Datums-/Zeitkomponenten . 332

Inhalt | 9

Zeiträume . 339
Zeitzonen . 343
Zusammenfassung . 345

18 Fehlende Werte . 347
Einführung . 347
Explizit fehlende Werte . 347
Implizit fehlende Werte . 349
Faktoren und leere Gruppen . 352
Zusammenfassung . 355

19 Verknüpfungen . 357
Einführung . 357
Schlüssel . 358
Grundlegende Verknüpfungen . 363
Wie funktionieren Verknüpfungen? . 369
Nicht-Gleichheitsverknüpfungen . 375
Zusammenfassung . 381

Teil IV Importieren

20 Tabellenkalkulationen . 385
Einführung . 385
Excel . 385
Google Sheets . 398
Zusammenfassung . 403

21 Datenbanken . 405
Einführung . 405
Datenbankgrundlagen . 406
Mit einer Datenbank verbinden . 406
Grundlagen von dbplyr . 409
SQL . 411
Übersetzung von Funktionen . 420
Zusammenfassung . 423

22 Arrow . 425
Einführung . 425
Die Daten erhalten . 426
Ein Datenset öffnen . 426
Das Parquet-Format . 428

10 | Inhalt

Das Paket dplyr mit Arrow verwenden . 430
Das Paket dbplyr mit Arrow verwenden . 432
Zusammenfassung . 433

23 Hierarchische Daten . 435
Einführung . 435
Listen . 436
Verschachtelung beseitigen . 440
Fallstudien . 444
JSON . 452
Zusammenfassung . 456

24 Web-Scraping . 457
Einführung . 457
Ethische und rechtliche Anmerkungen zum Scraping 458
HTML-Grundlagen . 460
Daten extrahieren . 461
Die richtigen Selektoren finden . 466
Alles zusammen . 467
Dynamische Sites . 472
Zusammenfassung . 472

Teil V Programmieren

25 Funktionen . 475
Einführung . 475
Vektorfunktionen . 476
Dataframe-Funktionen . 482
Diagrammfunktionen . 489
Stil . 495
Zusammenfassung . 496

26 Iteration . 499
Einführung . 499
Mehrere Spalten ändern . 500
Mehrere Dateien lesen . 509
Mehrere Ausgaben speichern . 518
Zusammenfassung . 523

Inhalt | 11

27 Ein Praxisleitfaden zu Basis-R . 525
Einführung . 525
Mehrere Elemente mit [auswählen . 526
Ein einzelnes Element mit $ und [[auswählen . 530
Familie der apply-Funktionen . 533
for-Schleifen . 535
Diagramme . 537
Zusammenfassung . 538

Teil VI Kommunizieren

28 Quarto . 541
Einführung . 541
Quarto-Grundlagen . 542
Visueller Editor . 545
Quelltexteditor . 547
Codeblöcke . 549
Bilder . 553
Tabellen . 557
Zwischenspeichern (Caching) . 558
Fehlersuche . 560
YAML-Header . 561
Workflow . 564
Zusammenfassung . 566

29 Quarto-Formate . 567
Einführung . 567
Ausgabeoptionen . 567
Dokumente . 568
Präsentationen . 569
Interaktivität . 569
Websites und Bücher . 572
Andere Formate . 573
Zusammenfassung . 573

Index . 575

	01_U1
	02_Kapitel 7
	03_IHV
	04_U4

