KAPITEL 7
Daten importieren

Einfithrung

Mit Daten zu arbeiten, die von den R-Paketen bereitgestellt werden, ist eine grof3-
artige Moglichkeit, die Tools der Data Science kennenzulernen. Doch an einem
gewissen Punkt mochten Sie das Gelernte auch auf Thre eigenen Daten anwenden.
Dieses Kapitel beschiftigt sich nun mit den Grundlagen, Datendateien in R einzu-
lesen.

Speziell konzentriert es sich darauf, wie man einfache, rechteckige Textdateien
einliest. Los geht es mit einem praktischen Hinweis fiir den Umgang mit Features
wie Spaltennamen, Typen und fehlenden Daten. Dann erfahren Sie, wie man meh-
rere Dateien auf einmal einliest und Daten aus R in eine Datei schreibt. SchlieRlich
lernen Sie, wie Sie Dataframes in R manuell zusammenbauen.

Voraussetzungen

In diesem Kapitel lernen Sie, lineare Dateien mit dem Paket readr in R zu laden.
Dieses Paket ist Teil des Kern-Tidyverse:

library(tidyverse)

Daten aus einer Datei lesen

Zu Beginn konzentrieren wir uns auf den gebriauchlichsten Typ einer rechteckigen
Datendatei: CSV, was als Abkiirzung fir Comma-Separated Values (kommage-
trennte Werte) steht. Das folgende Beispiel zeigt, wie eine einfache CSV-Datei aus-
sieht. Die erste Zeile, hiufig auch Header-Zeile oder Uberschriftenzeile genannt,
gibt die Spaltennamen an, und in den folgenden sechs Zeilen sind die Daten ent-
halten. Die Spalten werden durch Kommata voneinander getrennt.

| 125

Student ID,Full Name,favourite.food,mealPlan,AGE
1,Sunil Huffmann,Strawberry yoghurt,Lunch only,4
2,Barclay Lynn,French fries,Lunch only,5
3,Jayendra Lyne,N/A,Breakfast and lunch,7

4,Leon Rossini,Anchovies,Lunch only,

5,Chidiegwu Dunkel,Pizza,Breakfast and lunch,five
6,Giivenc Attila,Ice cream,Lunch only,6

Tabelle 7-1 stellt dieselben Daten als Tabelle dar.

Tabelle 7-1: Daten aus der Datei students.csv in Form einer Tabelle

StudentID Full Name favourite.food mealPlan AGE
1 Sunil Huffmann Strawberry yoghurt Lunch only 4

2 Barclay Lynn French fries Lunch only 5

3 Jayendra Lyne N/A Breakfastand lunch 7

4 Leon Rossini Anchovies Lunch only NA
5 Chidiegwu Dunkel Pizza Breakfastand lunch five
6 Giiveng Attila Ice cream Lunch only 6

Diese Datei konnen wir mit read csv() in R einlesen. Das erste Argument ist das
wichtigste: der Pfad zur Datei. Man kann sich den Pfad als die Adresse der Datei
vorstellen: Die Datei heifft students.csv und »wohnt« im Ordner data.

students <- read csv("data/students.csv")
#> Rows: 6 Columns: 5

#> — Column specification
#> Delimiter: ","

#> chr (4): Full Name, favourite.food, mealPlan, AGE

#> dbl (1): Student ID

#>

#> i Use “spec()’ to retrieve the full column specification for this data.
#> i Specify the column types or set “show col types = FALSE™ to quiet this
message.

Der obige Code funktioniert, wenn Sie die Datei students.csv in einem Ordner data
in Threm Projekt abgelegt haben. Die Datei students.csv kénnen Sie von https:/
oreil.ly/GDubb herunterladen oder direkt von der angegebenen URL lesen:

students <- read csv("https://pos.it/r4ds-students-csv")

Die Funktion read_csv() gibt eine Meldung zuriick mit der Anzahl der Datenzei-
len und -spalten, dem verwendeten Trennzeichen und den Spaltenspezifikationen
(Namen der Spalten, organisiert nach dem Typ der in den Spalten enthaltenen
Daten). AuRerdem erfahren Sie, wie sich die vollstindige Spaltenspezifikation
abrufen lisst und wie Sie diese Meldung unterdriicken kénnen. Die Meldung ist
integraler Bestandteil von readr, und wir kommen im Abschnitt »Spaltentypen
steuern« auf Seite 132 darauf zuriick.

126 | Kapitel 7: Datenimportieren

Praktischer Ratschlag

Nachdem Sie Daten eingelesen haben, besteht der erste Schritt in der Regel darin,
sie in bestimmter Weise umzuwandeln, um sie fiir die weitere Analyse leichter ver-
arbeiten zu konnen. Sehen wir uns in diesem Sinne noch einmal die students-
Daten an:

students

#> # A tibble: 6 x 5

#> "Student ID* “Full Name® favourite.food mealPlan AGE
#> <dbl> <chr> <chr> <chr> <chr>
1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4

#> 2 2 Barclay Lynn French fries Lunch only 5

#> 3 3 Jayendra Lyne N/A Breakfast and lunch 7

#> 4 4 Leon Rossini Anchovies Lunch only <NA>
#> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch five
#> 6 6 Giivenc Attila Ice cream Lunch only 6

In der Spalte favourite.food stehen verschiedene Lebensmittel sowie die Zeichen-
folge »N/A«, die ein richtiges NA sein sollte, das R als not available (nicht verfiig-
bar) erkennt. Das ist etwas, das wir mit dem Argument na angehen konnen.
StandardmiRig erkennt die Funktion read csv() nur leere Zeichenfolgen ("") in
diesem Datenset als NA-Werte. Wir mochten aber, dass sie auch den String "N/A"
erkennt:

students <- read csv("data/students.csv", na = c("N/A", ""))

students

#> # A tibble: 6 x 5

#> "Student ID" “Full Name® favourite. food mealPlan AGE
#> <dbl> <chr> <chr> <chr> <chr>
#> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4

#> 2 2 Barclay Lynn French fries Lunch only 5

3 3 Jayendra Lyne <NA> Breakfast and lunch 7

#> 4 4 Leon Rossini Anchovies Lunch only <NA>
#> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch five
6 6 Giivenc Attila Ice cream Lunch only 6

Sicherlich haben Sie bemerkt, dass die Spalten Student ID und Full Name von
Backticks umgeben sind. Das liegt daran, dass sie Leerzeichen enthalten und
damit die iiblichen Regeln von R fiir Variablennamen verletzen. Um auf diese
Variablen zu verweisen, miissen Sie sie in Backticks (*) einschliefRen:
students |>
rename (

student _id = “Student ID,
full_name = “Full Name®

)
#> # A tibble: 6 x 5
#> student_id full name favourite. food mealPlan AGE
#> <dbl> <chr> <chr> <chr> <chr>
#> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4
#> 2 2 Barclay Lynn French fries Lunch only 5

Daten aus einer Dateilesen | 127

3 3 Jayendra Lyne <NA> Breakfast and lunch 7

#> 4 4 Leon Rossini Anchovies Lunch only <NA>
5 5 Chidiegwu Dunkel Pizza Breakfast and lunch five
#> 6 6 Giivenc Attila Ice cream Lunch only 6

Als alternativer Ansatz bietet sich die Funktion janitor::clean names() an, um
mithilfe einer Heuristik alle Namen auf einmal in Snake Case umzuwandeln:'

students [> janitor::clean names()
#> # A tibble: 6 x 5

#> student_id full name favourite food meal plan age
#> <dbl> <chr> <chr> <chr> <chr>
1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4

#> 2 2 Barclay Lynn French fries Lunch only 5

#> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7

4 4 Leon Rossini Anchovies Lunch only <NA>
5 5 Chidiegwu Dunkel Pizza Breakfast and lunch five
6 6 Giivenc Attila Ice cream Lunch only 6

Nach dem Einlesen der Daten ist es hiufig ebenfalls erforderlich, die Variablenty-
pen zu betrachten. Zum Beispiel ist meal plan eine kategoriale Variable mit einem
bekannten Satz moglicher Werte, die in R als Faktor dargestellt werden sollte.
students |>
janitor::clean names() |>

mutate(meal plan = factor(meal plan))
#> # A tibble: 6 x 5

#> student_id full name favourite food meal plan age
#> <dbl> <chr> <chr> <fct> <chr>
1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4

#> 2 2 Barclay Lynn French fries Lunch only 5

#> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7

4 4 Leon Rossini Anchovies Lunch only <NA>
5 5 Chidiegwu Dunkel Pizza Breakfast and lunch five
6 6 Giivenc Attila Ice cream Lunch only 6

Beachten Sie, dass die Werte in der Variablen meal plan gleich geblieben sind, aber
der Variablentyp, der unter dem Variablennamen angegeben ist, hat sich von Zei-
chen (<chr>) in Faktor (<fct>) gedndert. Kapitel 16 geht niher auf Faktoren ein.

Bevor Sie diese Daten analysieren, werden Sie wahrscheinlich die Spalten age und
id bereinigen wollen. Derzeit ist age eine Zeichenvariable, weil eine der Beobach-
tungen als Zahlwort five ausgeschrieben ist statt als Ziffer 5. Wie sich derartige
Probleme korrigieren lassen, besprechen wir austiihrlich in Kapitel 20.

students <- students |>
janitor::clean names() |>

mutate(

meal plan = factor(meal plan),

age = parse number(if else(age == "five", "5", age))
)

1 Das Paket janitor (https://oreil.ly/-J8GX) ist nicht im Tidyverse enthalten, bietet aber praktische
Funktionen fiir die Datenbereinigung und funktioniert auch gut in Daten-Pipelines, die | > verwenden.

128 | Kapitel 7: Datenimportieren

students
#> # A tibble: 6 x 5

#> student id full name

#> <dbl> <chr>
#> 1 1
#> 2 2
3 3
4 4
5 5
6 6

Sunil Huffmann
Barclay Lynn
Jayendra Lyne
Leon Rossini
Chidiegwu Dunkel Pizza
Giiveng Attila

favourite food
<chr>

Strawberry yoghurt
French fries

<NA>

Anchovies

Ice cream

meal_plan age
<fet> <dbl>
Lunch only 4
Lunch only 5
Breakfast and lunch 7
Lunch only NA
Breakfast and Iunch 5
Lunch only 6

Neu ist hier die Funktion if _else(), die drei Argumente hat. Das erste Argument
test sollte ein logischer Vektor sein. Das Ergebnis enthilt den Wert des zweiten
Arguments, yes, wenn test gleich TRUE ist, und den Wert des dritten Arguments,
no, wenn der Test FALSE liefert. Hier sagen wir: Wenn age den String "five" ent-
hilt, mache "5" daraus, und wenn nicht, bleibt age, wie es war. Mehr iiber if
else() und logische Vektoren lernen Sie in Kapitel 12.

Andere Argumente

Es gibt noch eine Reihe weiterer wichtiger Argumente, die wir erwihnen miissen,
und sie lassen sich besser vorfithren, wenn wir uns zunichst einen praktischen
Trick ansehen: Die Funktion read csv() kann Textzeichenfolgen lesen, die Sie
erzeugt und wie eine CSV-Datei formatiert haben:

read csv(
"a,b,c
1,2,3
4,5,6"
)

#> # A tibble: 2 x 3

a b c

#> <dbl> <dbl> <dbl>
#> 1 1 2 3
2 4 5 6

Normalerweise verwendet read_csv() die erste Zeile der Daten fiir die Spaltenna-
men, was eine gingige Konvention ist. Es ist auch nicht ungewohnlich, dass am
Anfang der Datei einige Zeilen mit Metadaten enthalten sind. Die ersten n Zeilen
koénnen Sie mit skip = n tiberspringen, oder Sie konnen mit comment = "#" alle Zei-
len auslassen, die beispielsweise mit # beginnen:

read csv(

"The first line of metadata
The second line of metadata

X,Y,2
1,2,3", skip = 2

)

#> # A tibble: 1 x 3

#> X y z

#> <dbl> <dbl> <dbl>
1 1 2 3

Daten aus einer Datei lesen |

129

read_csv(

"# A comment I want to skip

X,Y,2

1,2,3", comment = "#'
)
#> # A tibble: 1 x 3
#> X y z
#> <dbl> <dbl> <dbl>
#> 1 1 2 3

Es kann auch sein, dass die Daten keine Spaltennamen haben. Mit col names =
FALSE weisen Sie read csv() an, die erste Zeile nicht als Uberschriftenzeile (Hea-
der) zu verarbeiten, sondern sie stattdessen sequenziell von X1 bis Xn zu beschriften:

read_csv(

"1,2,3

4,5,6",

col names = FALSE
)
#> # A tibble: 2 x 3
#> X1 X2 X3
#> <dbl> <dbl> <dbl>
1 1 2 3

#> 2 4 5 6

Alternativ kénnen Sie col _names einen Zeichenvektor {ibergeben, der fir die Spal-
tennamen verwendet wird:

read csv(
"1,2,3
4)5)6”1
col names = c("x", "y", "z")
)
#> # A tibble: 2 x 3
#> X y z
#> <dbl> <dbl> <dbl>
1 1 2 3

2 4 5 6

Wenn Sie diese Argumente kennen, sind Sie in der Lage, die meisten in der Praxis
vorkommenden CSV-Dateien einzulesen. (Fiir die {ibrigen Varianten miissen Sie
Thre .csv-Datei sorgfiltig inspizieren und die Dokumentation fiir die vielen ande-
ren Argumente von read_csv() studieren.)

Andere Dateitypen

Sobald Sie read csv() beherrschen, ist es sehr einfach, die anderen Funktionen
von readr zu verwenden. Sie miissen lediglich wissen, welche Funktion jeweils
infrage kommt:

130 | Kapitel 7: Datenimportieren

read csv2()
Liest Dateien ein, deren Felder durch Semikola (;) statt durch Kommata (,)
getrennt sind. Derartige Dateien sind in Lindern tiblich, in denen das Komma
als Dezimaltrennzeichen dient.

read tsv()
Liest Dateien ein, deren Felder durch Tabulatoren getrennt sind.

read delim()
Liest Dateien mit einem beliebigen Trennzeichen ein, wobei versucht wird,
das Trennzeichen automatisch zu erraten, wenn Sie es nicht angeben.

read_fwf()
Liest Dateien mit Feldern fester Breite ein. Die Felder kénnen Sie mit fwf_
widths() durch ihre Breite oder mit fwf positions() durch ihre Positionen
spezifizieren.

read_table()
Liest eine gebriuchliche Variation von Dateien mit fester Breite ein, wobei die
Spalten durch Leerzeichen getrennt sind.

read log()
Liest Protokolldateien im Apache-Stil ein.

Ubungen

1. Mit welcher Funktion wiirden Sie eine Datei einlesen, deren Felder durch |
getrennt sind?

2. Welche anderen Argumente aufler file, skip und comment haben die Funktio-
nen read_csv() und read_tsv() gemein?

3. Was sind die wichtigsten Argumente der Funktion read fwf()?

4. Manchmal enthalten CSV-Dateien Zeichenfolgen mit Kommata. Um Prob-
leme zu vermeiden, miissen diese Kommata in Anfiihrungszeichen einge-
schlossen werden, und zwar in einfache (') oder doppelte ("). StandardmiRig
geht read csv() davon aus, dass es sich um doppelte Anfithrungszeichen (")
handelt. Welches Argument miissen Sie bei read_csv() angeben, um den fol-
genden Text in einen Dataframe einzulesen?

"x,y\n1,'a,b""

5. Ermitteln Sie, was bei den folgenden Inline-CSV-Dateien jeweils nicht stimmt.
Was passiert, wenn Sie den Code ausfiihren?

read csv("a,b\n1,2,3\n4,5,6")
read csv("a,b,c\n1,2\n1,2,3,4")
read csv("a,b\n\"1")

read csv("a,b\n1,2\na,b")
read csv("a;b\n1;3")

Daten aus einer Dateilesen | 131

6. Uben Sie, sich auf nicht syntaktische Namen im folgenden Dataframe zu
beziehen, indem Sie

a. die Variable namens 1 extrahieren,
b. ein Streudiagramm von 1 gegen 2 erstellen,

eine neue Spalte namens 3 erzeugen, die 2 geteilt durch 1 ist,

i

e

die Spalten in one, two und three umbenennen:
annoying <- tibble(

o1

S

)

)

“1° * 2 + rnorm(length("17))

Spaltentypen steuern

Da eine CSV-Datei keine Informationen iiber den Typ jeder Variablen enthilt (d.h.,
ob sie einen logischen Wert, eine Zahl, eine Zeichenfolge usw. darstellt), versucht
readr, den Typ zu erraten. Dieser Abschnitt beschreibt, wie das Erraten funktio-
niert, wie man einige hiufige Probleme 16st, die zum Scheitern fithren, und wie man
bei Bedarf die Spaltentypen selbst bereitstellen kann. Zum Schluss stellen wir noch
einige allgemeine Strategien vor, die niitzlich sind, wenn readr katastrophal versagt
und Sie mehr Einblick in die Struktur Threr Datei benétigen.

Typen erraten

Das Paket readr verwendet eine Heuristik, um die Spaltentypen herauszufinden.
Fiir jede Spalte holt es die Werte von 1.000 Zeilen® in gleichmiRigen Abstinden
von der ersten bis zur letzten Zeile und ignoriert dabei fehlende Werte. Anschlie-
Rend arbeitet es die folgenden Fragen ab:

* Enthiilt sie nur F, T, FALSE oder TRUE (ohne Beachtung der GroR-/Kleinschrei-
bung)? Wenn ja, handelt es sich um einen logischen Wert.

* Enthilt sie nur Zahlen (z. B. 1, -4.5, 5e6, Inf)? Wenn ja, handelt es sich um
eine Zahl.

* Entspricht sie dem Standard ISO8601? Wenn ja, handelt es sich um ein
Datum oder um ein Datum mit Uhrzeit. (Auf Datums-/Zeitwerte kommen wir
ausfithrlich in Kapitel 17 im Abschnitt »Datums-/Zeitwerte erzeugen« auf
Seite 326 zuriick.)

* Andernfalls muss es sich um eine Zeichenfolge handeln.
Dieses Verhalten kénnen Sie mit diesem einfachen Beispiel nachvollziehen:

read _csv("
logical,numeric,date,string

2 Den Standardwert 1.000 kénnen Sie mit dem Argument guess_max iiberschreiben.

132 | Kapitel 7: Datenimportieren

TRUE,1,2021-01-15,abc
false,4.5,2021-02-15,def
T,Inf,2021-02-16,ghi

")

#> # A tibble: 3 x 4

#> logical numeric date string
#> <Igl> <dbl> <date> <chr>
#> 1 TRUE 1 2021-01-15 abc
#> 2 FALSE 4.5 2021-02-15 def
#> 3 TRUE Inf 2021-02-16 ghi

Diese Heuristik funktioniert gut, wenn das Datenset sauber ist, doch in der Praxis
werden Sie auf eine Reihe von seltsamen und ungewdhnlichen Fehlern stoRen.

Fehlende Werte, Spaltentypen und Probleme

Eine Spaltenerkennung scheitert vor allem dann, wenn eine Spalte unerwartete
Werte enthilt. Dann bekommen Sie eine Zeichenspalte anstelle eines spezifische-
ren Typs. Eine der hiufigsten Ursachen dafir ist ein fehlender Wert, der mit etwas
anderem als dem von readr erwarteten NA erfasst wurde.

Nehmen Sie diese einfache einspaltige CSV-Datei als Beispiel:

simple csv «<-
X
10

20
30"
Wenn wir die Datei ohne zusitzliche Argumente einlesen, wird x zu einer Zei-
chenspalte:
read_csv(simple_csv)
#> # A tibble: 4 x 1
x
#> <chr>
110
2.
#> 3 20
#> 4 30
In diesem kleinen Datenset konnen Sie den fehlenden Wert — durch einen Punkt (.)
dargestellt — leicht erkennen. Doch wie sieht es aus bei Tausenden von Zeilen mit
nur wenigen fehlenden Werten, die durch Punkte dargestellt werden? Man konnte
readr mitteilen, dass x eine numerische Spalte ist, und dann sehen, wo das Einle-
sen versagt. Hierfur weisen Sie dem Argument col types eine benannte Liste zu,
in der die Namen den Spaltennamen in der CSV-Datei entsprechen:
df <- read csv(
simple csv,
col types = list(x = col double())

Spaltentypensteuern | 133

#> Warning: One or more parsing issues, call “problems()" on your data frame for
#> details, e.g.:

#> dat <- vroom(...)

#> problems(dat)

Jetzt meldet read csv(), dass es ein Problem gibt, und sagt uns, dass wir mit pro
blems() mehr herausfinden konnen:

problems(df)

#> # A tibble: 1 x 5

#> row col expected actual file

#> <int> <int> <chr> <chr> <chr>

1 3 1 a double . /private/tmp/RtmpAY1Sop/file392d445cf269

Wir erfahren nun, dass es ein Problem in Zeile 3, Spalte 1 gibt, wo readr einen
Wert vom Typ double erwartet, aber einen Punkt (.) vorgefunden hat. Das legt
nahe, dass dieses Datenset fehlende Werte mit einem Punkt kennzeichnet. Also
setzen wir na = ".". Die automatische Typherleitung ist nun erfolgreich und liefert
uns die numerische Spalte, die wir haben wollten:

read csv(simple csv, na = ".")
#> # A tibble: 4 x 1

#> X

#> <dbl>

1 10

2 NA

#> 3 20

4 30

Spaltentypen

Im Paket readr kénnen Sie aus insgesamt neun Spaltentypen wihlen:

col logical() und col double() lesen logische Werte und Realzahlen. Man
benotigt sie nur selten (aufler wie oben gezeigt), da readr normalerweise sol-
che Typen automatisch erkennt.

col integer() liest Ganzzahlen. In diesem Buch unterscheiden wir nur selten
zwischen Ganzzahlen und Gleitkommazahlen (double), da sie funktional dqui-
valent sind. Allerdings kann das explizite Lesen von Ganzzahlen gelegentlich
niitzlich sein, da sie gegeniiber Gleitkommazahlen nur die Hilfte des Spei-
chers belegen.

col character() liest Zeichenfolgen. Dies kann niitzlich sein, wenn zum Bei-
spiel eine Spalte einen numerischen Bezeichner verkorpert, d.h. eine lange
Folge von Ziffern, die ein Objekt identifizieren, aber in mathematischen Ope-
rationen nicht sinnvoll sind. Beispiele hierfiir sind Telefonnummern, Sozial-
versicherungsnummern, Kreditkartennummern usw.

col factor(), col date() und col datetime() erzeugen Faktoren, Datums-
werte und Datums-/Zeitwerte. Mehr dazu erfahren Sie, wenn wir in den Kapi-
teln 16 und 17 auf diese Datentypen zu sprechen kommen.

134

| Kapitel 7: Daten importieren

* col number() ist ein toleranter numerischer Parser, der nicht numerische
Komponenten ignoriert und besonders niitzlich ist fir Wihrungen. Mehr
dazu lesen Sie in Kapitel 13.

* col skip() tiberspringt eine Spalte, die auch nicht in das Ergebnis aufgenom-
men wird. Dies kann zum Beispiel Zeit sparen, wenn Sie sehr groffe CSV-
Dateien einlesen miissen, aber nur einige der Spalten benotigen.

Es ist auch moglich, die Standardspalte zu tiberschreiben, indem Sie von 1ist() zu
cols() wechseln und .default angeben:

another _csv <-

X)yJZ
1,2,3"

read csv(
another csv,
col types = cols(.default = col character())
)
#t> # A tibble: 1 x 3
X y z
#> <chr> <chr> <chr>
#> 11 2 3

Eine andere nitzliche Hilfsfunktion ist cols only(), die nur die angegebene(n)
Spalte(n) einliest:

read csv(
another csv,
col types = cols only(x = col character())

#> # A tibble: 1 x 1

X
#> <chr>
#> 11

Daten aus mehreren Dateien einlesen

Manchmal sind Thre Daten auf mehrere Dateien verteilt, anstatt in einer einzigen
Datei enthalten zu sein. Ein Beispiel hierfiir sind monatliche Umsatzdaten, wobei
die Daten fiir jeden Monat in einer eigenen Datei liegen: 01-sales.csv fiir Januar,
02-sales.csv fuir Februar und 03-sales.csv fir Mirz. Mit read_csv() konnen Sie
diese Daten auf einmal einlesen und sie in einem einzelnen Dataframe iibereinan-
derstapeln.

sales files <- c("data/01-sales.csv", "data/02-sales.csv", "data/03-sales.csv")

read csv(sales files, id = "file")
#> # A tibble: 19 x 6

#> file month year brand item n
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 data/01-sales.csv January 2019 1 1234 3
#> 2 data/01-sales.csv January 2019 1 8721 9

Daten aus mehreren Dateien einlesen | 135

#> 3 data/01-sales.csv January 2019 1 1822 2
#> 4 data/01-sales.csv January 2019 2 3333 1
#> 5 data/01-sales.csv January 2019 2 2156 9
#> 6 data/01-sales.csv January 2019 2 3987 6

#> # .. with 13 more rows

Auch hier funktioniert der obige Code nur dann, wenn Sie die CSV-Dateien in
einem Ordner data in Threm Projekt abgelegt haben. Diese drei Dateien kénnen
Sie von https://oreil.ly/jVd8o, https:/foreil.ly/RYsgM und https://oreil.ly/4uZOm
herunterladen oder sie wie folgt direkt einlesen:
sales files <- c(
"https://pos.it/r4ds-01-sales"”,
"https://pos.it/r4ds-02-sales"”,

"https://pos.it/r4ds-03-sales"

)

read csv(sales files, id = "file")
Das Argument id fiigt eine neue Spalte namens file in den resultierenden Data-
frame ein. In ihr ist die Datei angegeben, aus der die Daten stammen. Das ist vor
allem dann hilfreich, wenn die einzulesenden Dateien keine Identifizierungsspalte
haben, die es erlauben wiirde, die Beobachtungen zu ihren urspriinglichen Quel-
len zurtickzuverfolgen.

Wenn Sie viele Dateien einlesen wollen, kann es recht umstindlich sein, ihre
Namen als Liste zu schreiben. Stattdessen kénnen Sie die Basisfunktion list.
files() verwenden, die Thnen die gewiinschten Dateien anhand eines Musters in

den Dateinamen zusammensucht. Mehr iiber derartige Muster lernen Sie in Kapi-
tel 15.

sales files <- list.files("data", pattern = "sales\\.csv$", full.names = TRUE)
sales files
#> [1] "data/01-sales.csv" "data/02-sales.csv" "data/03-sales.csv"

In eine Datei schreiben

Das Paket readr bringt ebenfalls zwei niitzliche Funktionen mit, um Daten auf
einen Datentriger zu schreiben: write csv() und write tsv(). Die wichtigsten
Argumente dieser Funktionen sind x (der zu speichernde Dataframe) und file
(der Ort, an dem die Datei zu speichern ist). Auferdem kénnen Sie mit na festle-
gen, wie fehlende Werte gespeichert werden sollen, und mit append, ob Sie den
Dataframe an eine vorhandene Datei anfiigen wollen.

write csv(students, "students.csv")

Lesen wir nun diese CSV-Datei erneut ein. Beachten Sie, dass die Informationen
tiber die Variablentypen, die Sie eben eingerichtet haben, verloren gehen, wenn Sie
den Dataframe als CSV speichern. Somit stehen Sie wieder am Anfang und miissen
eine reine Textdatei einlesen:

136 | Kapitel 7: Datenimportieren

students
#> # A tibble: 6 x 5
#> student id full name

#> <dbl> <chr>

1 1 Sunil Huffmann
2 2 Barclay Lynn

#> 3 3 Jayendra Lyne
#> 4 4 Leon Rossini

#> 5 5 Chidiegwu Dunkel
#> 6 6 Giivenc Attila

write csv(students, "students-2.
read csv("students-2.csv")

#> # A tibble: 6 x 5

#> student_id full name

#> <dbl> <chr>

#> 1 1 Sunil Huffmann
#> 2 2 Barclay Lynn

#> 3 3 Jayendra Lyne
4 4 Leon Rossini

#> 5 5 Chidiegwu Dunkel
6 6 Giivenc Attila

favourite food
<chr>

Strawberry yoghurt
French fries

<NA>

Anchovies

Pizza

Ice cream

csv"

favourite food
<chr>

Strawberry yoghurt
French fries

<NA>

Anchovies

Pizza

Ice cream

meal plan age
<fet> <dbl>
Lunch only 4
Lunch only 5
Breakfast and Iunch 7
Lunch only NA
Breakfast and lunch 5
Lunch only 6
meal plan age
<chr> <dbl>
Lunch only 4
Lunch only 5
Breakfast and lunch 7
Lunch only NA
Breakfast and lunch 5
Lunch only 6

Deshalb sind CSV-Dateien nicht so recht geeignet, um Zwischenergebnisse zu
speichern — Sie miissen die Spaltenspezifikation jedes Mal erneut durchfiihren,
wenn Sie den Dataframe laden. Hierzu gibt es zwei Alternativen:

* write rds() und read rds() sind einheitliche Wrapper um die Basisfunktio-
nen readRDS() und saveRDS(). Diese Funktionen speichern die Daten in dem
R-eigenen Binidrformat namens RDS. Wenn Sie also das Objekt zuriickladen,
dann laden Sie genau das gleiche R-Objekt zuriick, das Sie gespeichert haben.

write rds(students,
read rds("students.rds")

"students.rds")

#> # A tibble: 6 x 5

#> student_id full name favourite_food meal_plan age
#> <dbl> <chr> <chr> <fet> <dbl>
#> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4
#> 2 2 Barclay Lynn French fries Lunch only 5
#> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7
#> 4 4 Leon Rossini Anchovies Lunch only NA
#> 5 5 Chidiegwu Dunkel Pizza Breakfast and Iunch 5
#> 6 6 Giivenc Attila Ice cream Lunch only 6

Das Paket arrow erlaubt es, Dateien im Datendateiformat Parquet zu lesen und

zu schreiben. Dieses schnelle, binire Dateiformat lisst sich tiber Programmier-
sprachen hinweg einsetzen. Auf das Paket arrow kommen wir ausfiihrlich in

Kapitel 22 zuriick.

library(arrow)
write parquet(students,

"students.parquet")

read parquet("students.parquet")

#> # A tibble: 6 x 5

#> student_id full name favourite food meal plan age
#> <dbl> <chr> <chr> <fet> <dbl>
In eine Datei schreiben | 137

1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4
#> 2 2 Barclay Lynn French fries Lunch only 5
#> 3 3 Jayendra Lyne NA Breakfast and lunch 7
4 4 Leon Rossini Anchovies Lunch only NA
5 5 Chidiegwu Dunkel Pizza Breakfast and lunch 5
#> 6 6 Giivenc Attila Ice cream Lunch only 6

Parquet ist in der Regel viel schneller als RDS und lisst sich auch aufRerhalb von R
einsetzen. Allerdings erfordert es das Paket arrow.

Dateneingabe

Manchmal miissen Sie ein Tibble »manuell« zusammenstellen, indem Sie ein
wenig Dateieingabe in Threm R-Skript praktizieren. Hierbei helfen Thnen zwei
niitzliche Funktionen, die sich darin unterscheiden, ob das Tibble spalten- oder
zeilenorientiert ist. Die Funktion tibble() arbeitet spaltenorientiert:

tibble(

X = C(l) 2, 5)1

y = C(”h", "m") "g"),

z = c(0.08, 0.83, 0.60)

)

#> # A tibble: 3 x 3
#> Xy z
#> <dbl> <chr> <dbl>
#> 1 1h 0.08
#> 2 2m 0.83
3 59 0.6

Wenn die Daten spaltenorientiert angeordnet sind, ldsst sich schwerer erkennen,
welche Beziehungen zwischen den Zeilen bestehen. Eine Alternative ist also trib
ble(), kurz far transposed tibble, mit dem Sie Thre Daten zeilenweise anordnen
konnen. Die Funktion tribble() ist auf die Dateneingabe im Code angepasst:
Spalteniiberschriften beginnen mit einer Tilde (*), und die Eintrige werden durch
Kommata getrennt. Dadurch ist es moglich, kleine Datenmengen in einer gut les-
baren Form anzuordnen:

tribble(

X, Y, 2,

1, "h", 0.08,

2,"m", 0.83,

5,"g",0.60

)
#> # A tibble: 3 x 3

X y z
#> <chr> <dbl> <dbl>
1 1h 0.08
2 2m 0.83
3 59 0.6

138 | Kapitel 7: Datenimportieren

Zusammenfassung

In diesem Kapitel haben Sie gelernt, wie Sie CSV-Dateien mit read_csv() laden
und Thre eigene Dateneingabe mit tibble() und tribble() realisieren. Es wurde
gezeigt, wie CSV-Dateien funktionieren, auf welche Probleme Sie moglicherweise
stoflen und wie Sie diese l6sen konnen. In diesem Buch werden wir noch mehr-
mals auf den Datenimport zuriickkommen: In Kapitel 20 laden Sie Daten aus
Excel und Google Sheets, in Kapitel 21 aus Datenbanken, in Kapitel 22 aus Par-
quet-Dateien, in Kapitel 23 von JSON und in Kapitel 24 von Websites.

Wir sind fast am Ende dieses Abschnitts des Buchs angelangt, aber es gibt noch
ein wichtiges letztes Thema zu behandeln: wie man Hilfe bekommt. Im nichsten
Kapitel erfahren Sie, wo Sie am besten nach Hilfe suchen kénnen und wie Sie ein
Reprex erstellen, um die Chancen auf gute Hilfe zu maximieren, und Sie erhalten
einige allgemeine Ratschlige dazu, wie Sie in der Welt von R auf dem Laufenden
bleiben konnen.

Zusammenfassung | 139

Inhalt

Einfihrung 13
Teill Gesamtbild
1 Datenvisualisierung 29
Einfihrung 29
Erste Schritte 30
ZIElSEtZUNG . . .ot 32
ggplot2-Aufrufe 42
Verteilungen visualisieren 42
Beziehungen visualisieren 46
Diagramme speichern 53
Haufige Probleme 54
Zusammenfassung 55
2 Workflow:Grundlagen 57
Grundlagen der Codierung i 57
Kommentare 58
Was macht einen Namen aus?iiuneinnann .. 59
Funktionen aufrufen 60
Zusammenfassung 62
3 Datentransformationl 63
Einfiuhrung 63
VOraussetzUNZeN« ottt ettt e e 63
Zellen ... 66
Spalten 71
Die Pipe . ..o 76

GIUPPCIL « e vt ettt e e e e e e e e 78

Fallstudie: Aggregate und Stichprobengrofe 85
Zusammenfassung 87
4 Workflow: Programmierstil 89
Namen 90
Leerzeichen 90
PIpes . .o 91
ZEPlOt 93
Abschnittskommentare 93
Ubungen 94
Zusammenfassung 94
5 Datenaufbereitung, 95
Einfihrung 95
Aufbereitete Daten 96
Daten langermachen 99
Daten breitermachen 108
Zusammenfassung 112
6 Workflow: Skripte und Projekte 113
SKIIPLE ot 113
Projekte 117
Ubungen 122
Zusammenfassung e 122
7 Datenimportieren 125
Einfohrung 125
Daten aus einer Dateilesen 125
Spaltentypen SteUETTl vttt e ettt et et 132
Daten aus mehreren Dateien einlesen 135
In eine Dateischreibeno i 136
Dateneingabe 138
Zusammenfassung 139
8 Workflow: Hilfeabrufen 141
GoogleistThrFreund i 141
Ein Reprexerstellen 142
Sich selbst einbringen 144
Zusammenfassung 144
6 | Inhalt

Teil Il Visualisieren

9

10

n

Datenvisualisierung, 147
Einfihrung 147
Asthetische Zuordnungen 148
Geometrische Objekte 152
Facetten 158
Statistische Transformationen 160
PoSItionsanpassUNgeno ov vttt e 164
Koordinatensystemeuuiieinineinaan.. 168
Die geschichtete Grammatik der grafischen Darstellung 170
Zusammenfassung 171
Explorative Datenanalyse 173
Einfihrung 173
Fragen 174
Variationvu i 175
Ungewohnliche Werte 179
Kovariationt 182
Musterund Modelle 192
Zusammenfassung 195
Kommunikation L 197
Einfihrung 197
Beschriftungen 198
Anmerkungen 200
Skalen 205
Themen o 220
Layout . .o 223
Zusammenfassung 227

Teil Il Transformieren

12

LogischeVektoren, 231
Einfihrung 231
Vergleiche 232
Boolesche Algebra 236
Zusammenfassungen 239
Bedingte Transformationencoouieinainnaon.. 242
Zusammenfassung 246

13 Zahlen 247
Einfihrung 247
Zahlen erzeugent 247
ZAhler . . 248
Numerische Transformationen 250
Zahlen in Bereiche aufteilen oo oL 256
Allgemeine Transformationen 257
Numerische Zusammenfassungen 261
Zusammenfassung 267

14 SHNGS 269
Einfohrung 269
Einen String erzeugenc.iuiuin ittt 270
Viele Strings aus Datenerstellen 272
Daten aus Strings extrahieren 275
Buchstaben 281
Nichtenglischer Text i 283
Zusammenfassung 286

15 Reguldre Ausdriicke 287
Einfihrung 287
Muster—Grundlagen 288
Wichtige Funktionen 290
Details zu MUSEEITottt 295
MUSEETSTEUCTUNE .« o v et vttt et e e et e e e e e e e a e 302
Praxis 304
Regulire Ausdriicke an anderen Stellen 309
Zusammenfassung 311

16 Faktoren 313
Einfohrung 313
Faktoren-Basicsot 313
General Social Survey 315
Faktorreihenfolge dndern, 316
Faktorlevelsdndern 321
Geordnete Faktoren i 323
Zusammenfassung 324

17 DatumundUhrzeit 325
Einfihrung 325
Datums-/Zeitwerte erzeugenouuenenenenenen... 326
Datums-/Zeitkomponentenouuueeennneeon... 332

8 | Inhalt

ZOITAUIMEot 339
ZOIZONEIL ...ttt 343
Zusammenfassung 345
18 FehlendeWertel 347
Einfihrung 347
Explizit fehlende Werte 347
Implizit fehlende Werte 349
Faktoren und leere Gruppeno 352
Zusammenfassung 355
19 Verkniipfungen 357
Einfihrung 357
Schliissel 358
Grundlegende Verkniipfungen 363
Wie funktionieren Verkniipfungen? 369
Nicht-Gleichheitsverkniipfungen 375
Zusammenfassung 381
Teil IV Importieren
20 Tabellenkalkulationen 385
Einfihrung 385
Excel .o 385
Google Sheets 398
Zusammenfassung 403
21 Datenbanken 405
Einfihrung 405
Datenbankgrundlagen 406
Mit einer Datenbank verbinden 406
Grundlagenvondbplyr...... 409
SQL 411
Ubersetzung von Funktionenooouuo... 420
Zusammenfassung 423
22 ArrOW . 425
Einfihrung 425
Die Datenerhalten 426
Ein Datenset offnen i 426
Das Parquet-Format 428

23

24

Das Paket dplyr mit Arrow verwenden 430

Das Paket dbplyr mit Arrow verwenden 432
Zusammenfassung 433
HierarchischeDaten, 435
Einfihrung 435
LIStEN .« oottt 436
Verschachtelung beseitigen 440
Fallstudien 444
JSON 452
Zusammenfassung 456
Web-Scraping 457
Einfohrung 457
Ethische und rechtliche Anmerkungen zum Scraping 458
HTML-Grundlagen i, 460
Daten extrahieren 461
Die richtigen Selektoren finden 466
Alles zusammen 467
Dynamische Sites ot 472
Zusammenfassung 472

TeilV Programmieren

25 Funktionen 475
Einfohrung 475
Vektorfunktionen 476
Dataframe-Funktionen 482
Diagrammfunktionen i 489
Stl o 495
Zusammenfassung 496

26 Iteration 499
Einfohrung 499
Mehrere Spaltendndern 500
Mehrere Dateien lesen 509
Mehrere Ausgaben speichern L. 518
Zusammenfassungo 523

10 | Inhalt

27

Ein PraxisleitfadenzuBasis-R 525
Einfihrung 525
Mehrere Elemente mit [auswihlen 526
Ein einzelnes Element mit $ und [[auswdhlen 530
Familie der apply-Funktionen 533
for-Schleifen 535
Diagramme 537
Zusammenfassung 538

TeilVI Kommunizieren

28

29

QUarto 541
Einfiuhrung 541
Quarto-Grundlagen 542
Visueller Editor 545
Quelltexteditor 547
Codeblockeo 549
Bilder. o 553
Tabellen 557
Zwischenspeichern (Caching) 558
Fehlersuche 560
YAML-Header 561
Workflow 564
Zusammenfassung 566
Quarto-Formate 567
Einfihrung 567
Ausgabeoptionen 567
Dokumente 568
Prasentationeniiuiiiit i 569
InteraktivitAL .. .ot 569
Websitesund Biicher 572
Andere Formate 573
Zusammenfassung 573
Index 575

Inhalt | 11

	01_U1
	02_Kapitel 7
	03_IHV
	04_U4

