
Dies ist ein neues Kapitel    127

Listen von Dateien3

Funktionen, Module und 
Dateien

Ihr Code kann nicht ewig in einem Notebook leben. Er will frei sein.� 
Und wenn es darum geht, Ihren Code zu befreien und mit anderen zu teilen, dann ist eine selbst erstellte 

Funktion der erste Schritt, auf den kurz darauf ein Modul folgt, mit dem Sie Ihren Code organisieren 

und weitergeben können. In diesem Kapitel werden Sie aus dem bisher geschriebenen Code direkt eine 

Funktion und auf dem Weg auch gleich ein gemeinsam nutzbares Modul erstellen. Ihr Modul wird sich 

sofort an die Arbeit machen, während Sie for-Schleifen, if-Anweisungen, Tests auf bestimmte Bedingun-

gen sowie die Python-Standardbibliothek, PSL (Python Standard Library), verwenden, um die Schwimm-

daten des Coachs zu verarbeiten. Außerdem werden Sie lernen, Ihre Funktionen zu kommentieren (was 

immer eine gute Idee ist). Es gibt viel zu tun, also an die Arbeit!

Nichts liebe ich mehr, 
als den ganzen Tag 
mit meinen Dateien 

zu verbringen …



128    Kapitel 3

Bestandsaufnahme

Bürogespräch
Sam: Ich habe den Coach über die aktuellen Fortschritte 
informiert.

Alex: Und? Ist er zufrieden?

Sam: Irgendwie schon. Er ist begeistert vom Anfang, aber 
wie Ihr euch vorstellen könnt, interessiert er sich eigentlich 
nur für das Endergebnis, nämlich das Balkendiagramm.

Alex: Und das sollte ja nicht so schwer sein, nachdem unser 
aktuellstes Notebook die nötigen Daten erzeugt, oder?

Mara: Zumindest ungefähr.

Alex: Wieso? Was stimmt denn nicht?

Mara: Das aktuelle Notebook, Times.ipynb, erzeugt Da- 
ten für Darius, der die 100 Meter Butterfly in der Alters-
gruppe der unter 13-Jährigen schwimmt. Wir müssen die 
Umwandlungen und die Durchschnittsberechnungen aber 
für die Dateien aller Schwimmer durchführen.

Alex: Das kann doch nicht so schwer sein: einfach den 
Dateinamen am Anfang des Notebooks durch einen 
anderen ersetzen, dann den Run All-Button drücken – 
und zack!, schon haben wir die Daten.

Mara: Glaubst du wirklich, der Coach hat da große Lust 
drauf ?

Alex: Ähh … ich habe ganz vergessen, dass der Coach 
das ja alles selbst tun muss.

Sam: Wir sind aber auf  dem richtigen Weg. Wir brau-
chen eine Möglichkeit, die Dateinamen aller Schwimmer 
zu verarbeiten. Wenn wir das hinkriegen, können wir mit 
dem Code für das Balkendiagramm weitermachen.

Alex: Da haben wir aber noch einiges vor uns …

Mara: Ja, aber der Weg ist nicht so weit. Wie gesagt, der 
gesamte nötige Code ist schon im Times.ipynb-Notebook 
enthalten.

Alex: … das du dem Coach nicht geben willst …

Mara: … jedenfalls nicht in seiner jetzigen Form.

Alex: Aber wie dann?

Sam: Wir müssten den Code so verpacken, dass er mit 
beliebigen Dateinamen und auch ohne Notebook funktio-
niert.

Alex: Ah, ja klar! Wir brauchen eine Funktion!

Sam: … die uns immerhin ein Stück weiterbringt.

Mara: Wenn sich die Funktion in einem Python-Modul 
befindet, kann sie an vielen Orten weiterverwendet wer-
den.

Alex: Das klingt doch gut. Womit sollen wir anfangen?

Mara: Am besten wandeln wir den bisherigen Code 
im Notebook in eine Funktion um, die wir aufrufen und 
weitergeben können.



Sie sind hier 4    129

Listen von Dateien

Sie haben den nöt igen Code schon fast be isammen
Im Moment befindet er sich aber noch in Ihrem Times.ipynb-Notebook.

Wenn es darum geht, zu experimentieren und Code von Grund auf  neu zu erstellen, sind Jupyter 
Notebooks kaum zu schlagen. Soll dagegen vorhandener Code wiederverwendet und weitergegeben 
werden, sind Notebooks nicht unbedingt die beste Wahl (und um ehrlich zu sein, wurden sie dafür 
auch nicht entwickelt).

Ein guter Einsatzzweck bestünde darin, eine Kopie Ihres Notebooks an jemanden weiterzugeben, 
der es dann in seiner eigenen Jupyter-Umgebung ausführen kann. Aber stellen Sie sich vor, Sie 
bauten eine Applikation, die einen Teil des Codes aus Ihrem Notebook verwenden muss …

Wie können Sie diesen Code mit anderen teilen?

Um den Code Ihres Notebooks weiterzugeben, müssen Sie eine Funktion erstellen, die Ihren 
Code enthält. Danach können Sie diese Funktion in einem Modul verpacken und dieses weiter-
geben. Beides werden wir in diesem Kapitel tun.

Für den Anfang erstellen Sie eine neue leere Datei in Ihrem Learning-Ordner und nennen Sie 
swimclub.py. 

Im Anhang dieses Buchs stellen wir eine Jupyter-Erweiterung vor, die Ihnen bei dieser Anforde-rung helfen kann. Ohne Weiteres ist die Weiter-gabe des Codes im Notebook tatsächlich nicht ganz einfach.

Ihr Bildschirm sieht mög-
licherweise anders aus als in 
dieser Abbildung. Erstens 
zeigen wir hier VS Code 
auf einem Mac (aber unter 
Windows oder Linux sollte es 
ähnlich aussehen). Zweitens 
hat VS Code bemerkt, dass 
wir Git für die Codeverwal-
tung benutzen. Daher infor-
miert uns das GUI darüber, 
dass es eine neue Datei gibt, 
die noch nicht versioniert ist.

Wir werden Git in diesem Buch nicht weiter behandeln, wollten Sie aber nicht irritieren, wenn Ihr Bildschirm sich von unserem unter-scheidet. Wenn Sie »swimclub.py« in Ihrem »Learning«-Ordner erstellt haben und VS Code darauf wartet, dass Sie den leeren Bildschirm mit etwas Code füllen, dann sind Sie schon startklar.



130    Kapitel 3

Ihre erste Funktion

Überlegen Sie sich einen schönen, aussagekräftigen Namen.
Der Code im Times.ipynb-Notebook verarbeitet zuerst den Dateinamen und liest dann 
den Inhalt der Datei, um die vom Coach benötigten Daten zu extrahieren. Daher wollen 
wir die Funktion read_swim_data (Schwimmdaten_lesen) nennen. Ein schöner 
Name, ein aussagekräftiger Name … Donnerwetter, er ist fast schon perfekt!

1

Entscheiden Sie, welche Anzahl und welche Namen mögliche Parameter haben sollen. 
Ihre Funktion read_swim_data übernimmt einen Parameter, der angibt, welcher 
Dateiname verwendet werden soll. Nennen wir ihn filename (Dateiname).

2

Rücken Sie den Code der Funktion unterhalb einer def-Anweisung ein.
Das Schlüsselwort def leitet die Funktion ein. Hier können Sie ihren Namen und 
mögliche Parameter angeben. Sämtlicher Code, der unterhalb der def-Zeile 
eingerückt ist, wird als Codeblock der Funktion verwendet.

3

Eine Funkt ion in Python erste l len
Neben dem eigentlichen Code für die Funktion müssen Sie sich auch Gedanken über 
die Signatur der Funktion machen. Hierbei gibt es drei Dinge zu beachten: 

Es kann helfen, sich »def« als Abkür-zung für »Definiere eine Funktion« vor-zustellen.

Anatomie e iner Funkt ionssignatur

1

2

3

Einen schönen, aussagekräf t igen Namen ver wenden.
Dieser Name gibt den Nutzerinnen und Nutzern Ihrer Funktion einen guten 
Hinweis darauf, was sie tut.

Alle Parameter benennen.
Hier gibt es nur einen einzigen Parameter.

Beachten Sie die Ver wendung von def und Ihrem 
besten Freund (dem Doppelpunkt).
Der Einsatz von def und dem Doppelpunkt ist ein klarer Hinweis darauf, 
dass eingerückter Code nicht weit ist.



Sie sind hier 4    131

Listen von Dateien

Speichern Sie Ihren Code, so of t Sie wollen
Bauen Sie nun die Signatur für die Funktion read_swim_data am Anfang der Datei 
swimclub.py ein: 

Hier teilt die Benutzerschnittstelle Ihnen mit, 
dass Ihr Code nicht nur unversioniert, sondern 
auch ungespeichert ist. Sie können Ihren Code so 
oft speichern, wie Sie es für nötig halten.

Fügen Sie der Funkt ion den Code hinzu, der gemeinsam genutzt 
werden sol l
Nachdem die Funktionssignatur der Funktion fertig ist, müssen Sie den nötigen Code aus 
dem Notebook kopieren und in swimclub.py einfügen. Dieser Code befindet sich im Notebook 
Times.ipynb aus dem vorigen Kapitel. 

Nehmen Sie sich etwas Zeit, um den Code 
in Ihrem Times.ipynb-Notebook zu sichten. 
Brauchen Sie wirklich den gesamten Code, 
der hier enthalten ist?

Kopf- 
Nuss



132    Kapitel 3

Funktion: erster Versuch

Einfach den Code kopieren re icht nicht
Wir haben den Code, den wir für nötig halten, in unsere read_swim_data-Funk-
tion eingefügt. Bei uns sieht der Code so aus:

Ein paar Mal »Copy-and-paste«, und 
der Code ist in »swimclub.py« gelan-
det. Aber reicht das wirklich aus?

Haben diese schnörkeligen 
Unterstreichungen unter manchen 

Codeteilen eine bestimmte 
Bedeutung?

Das haben sie tatsächlich. Gut gesehen.
Hiermit teilt VS Code Ihnen mit, dass Ihr Code Werte 
benutzt, die noch definiert werden müssen. Obwohl 
der Code syntaktisch in Ordnung ist, wird Python ihn 
nicht ausführen, solange diese Werte fehlen.

Diese Werte befinden sich im Times.ipynb-Notebook.



Sie sind hier 4    133

Listen von Dateien

Sämtlicher nöt iger Code muss kopiert werden
Ein Blick auf  die schnörkeligen Linien auf  der vorherigen Seite macht deutlich, dass 
FN, FOLDER und statistics alle fehlen. 

FOLDER und statistics lassen sich leicht reparieren. Fügen Sie einfach die fol-
genden zwei Codezeilen am Anfang der swimclub.py-Datei ein (außerhalb der Funktion):

Wenn Sie den Code aktiv mitverfolgen (ihn beim Lesen eingeben und ausprobieren), werden Sie mer-
ken, dass die Schnörkellinien verschwinden, sobald Sie diese Codezeile in VS Code eingeben.

Berauscht von diesem Erfolg, sind Sie jetzt eventuell versucht, auch die Definition der Konstanten FN 
einfach hierherzukopieren. Das würde allerdings zu einem Fehler führen. Wie Sie wissen, verweist FN 
im Times.ipynb-Notebook auf  eine bestimmte Datendatei, die Informationen zu Darius enthält. Wenn 
Sie FN in diesem Code weiterverwenden, wird Ihre Funktion ausschließlich diese Datei nutzen und 
sonst keine. Die Lösung dieses Problems besteht darin, nicht die Konstante FN zu verwenden, sondern 
den Wert, der an die Funktion read_swim_data übergeben wird. So kann der Coach letztlich die 
Dateien aller Schwimmer verarbeiten:

Teilt Ihrem Code mit, von 
wo die Funktion »mean« 
importiert werden soll.

Teilt Ihrem Code mit, 
wo die Datendateien 
zu finden sind.

Ein Wert für »file-
name« wird an die 
Funktion übergeben.

Anstatt sich auf den Wert von »FN« zu verlassen, nutzt dieser Code den übergebenen Wert von »filename«.

Haben Sie‘s bemerkt? Keine 
schnörkeligen Linien mehr!



134    Kapitel 3

Ein schneller Test

Sobald Ihre Funktion definiert ist, sollten Sie sie speichern, bevor Sie mit dieser Probefahrt weitermachen.
Lassen Sie Ihren swimclub.py-Code in VS Code weiterhin geöffnet (wenn Sie wollen). Öffnen Sie nun ein neues Note-
book, das Sie Files.ipynb nennen. Sie wissen bereits, dass Pythons import-Anweisung mit der PSL funktioniert. Wie 
sich zeigt, können Sie import auch für Ihre eigenen Module nutzen. Und wissen Sie was? Die Datei swimclub.py ist ein 
Python-Modul. Und das wiederum heißt, Sie können import verwenden, wie unten gezeigt:

Probefahrt

Geben Sie diesen Code, wie bei Ihren anderen Notebooks auch (diesmal aller-
dings in »Files.ipynb«), in eine Zelle ein und drücken Sie »Shift+Enter«.

Beachten Sie, wie wir den Namen der Datendatei übergeben haben, die hier verarbeitet werden soll. Vorher war dieser Wert der Variablen »FN« zugewiesen.

Wenn alles in Ordnung ist, wird nach Ausführung der »import«-
Anweisung eine neue leere Codezelle angezeigt. Sehen Sie Fehler, 
sollten Sie zwei Dinge überprüfen: Stellen Sie sicher, dass Sie 
Ihren »swimclub.py«-Code gespeichert haben, und sorgen Sie 
dafür, dass sich »Files.ipynb« im gleichen Ordner befindet wie 
»swimclub.py« (in Ihrem »Learning«-Ordner).Über die bekannte 

Punktschreibweise 
können Sie Ihre Funktion 
»read_swim_data« 
(importiert aus dem 
»swimclub«-Modul) 
aufrufen.

Drücken Sie nun »Shift+Enter« in Ihrer aktuellen Code-
zelle. Sollten Sie und wir ähnlich ticken, werden Sie sich 
vermutlich jetzt wundern. Wir haben erwartet, einige Daten 
zu sehen, aber stattdessen sehen wir, was Sie sehen, nämlich … 
nichts! Was ist denn jetzt schon wieder los?



Sie sind hier 4    135

Listen von Dateien

Ich glaube, ich weiß, was hier los 
ist. Die Funktion muss nicht nur 

Daten übernehmen, sondern auch 
Ergebnisse zurückgeben, richtig?

Ja, ganz genau.
An die Funktion übergebene Argumente werden 
den in der Funktionssignatur definierten Para-
meternamen zugewiesen. Um die Ergebnisse an 
den aufrufenden Code zurückzugeben, brau-
chen Sie jedoch eine return-Anweisung. 
 

Die Änderung ist nicht groß, aber wichtig.
Nehmen Sie sich etwas Zeit, um Ihre read_swim_data-Funktion in der Datei swimclub.py zu überprüfen. Danach 
schreiben Sie die return-Anweisung auf die unten stehende Leerzeile, die Sie am Ende der Funktion einfügen würden, 
um Werte an den Aufrufer zurückzugeben.
Einen Vorschlag für die return-Anweisung finden Sie auf der folgenden Seite. Trotzdem sollten Sie vor dem Umblät-
tern erst einmal selbst versuchen, diese einzelne Codezeile zu erstellen. (Tipp: Wir haben uns entschieden, sechs 
Werte aus der Funktion zurückzugeben.)

Spitzen Sie Ihren Bleistift

Antworten auf Seite 136



136    Kapitel 3

return-Lösung

Benutzen Sie VS Code, um diese Code-
zeile am Ende Ihrer Funktion einzufügen. 
Danach speichern Sie die Datei.

Die Änderung ist nicht groß, aber wichtig.
Sie sollten etwas Zeit investieren, um Ihre read_swim_data-Funktion in der Datei swimclub.py zu überprüfen. Danach 
sollten Sie die return-Anweisung auf die unten stehende Leerzeile schreiben, die Sie am Ende der Funktion einfügen 
würden, um Werte an den Aufrufer der Funktion zurückzugeben.
Hier sehen Sie unsere return-Anweisung, die sechs Werte zurückgibt. Wie schneidet Ihre Anweisung im Vergleich 
dazu ab?

Lösung
Spitzen Sie Ihren Bleistift

return swimmer, age, distance, stroke, times, average

Die Funktion gibt eine Sammlung von Werten an den 
aufrufenden Code zurück. Beachten Sie das Fehlen von 
runden Klammern um die Liste der Variablennamen (die 
sind in Python nicht nötig).

Aktualisieren und spe ichern Sie Ihren Code, bevor Sie 
weitermachen …
Bevor Sie fortfahren, sollten Sie sicherstellen, dass Ihre read_swim_data-Funktion in 
Ihrer swimclub.py-Datei mit der unten stehenden Zeile endet. Achten Sie darauf, dass die 
Einrückung dieser Codezeile mit den Einrückungen des übrigen Codes Ihrer Funktion 
übereinstimmt.

Nachdem Sie den Code Ihres Moduls gespeichert haben, können Sie es vermutlich kaum 
erwarten, zu Ihrem Files.ipynb-Notebook zurückzukehren, um zu sehen, wie sich die Ände-
rungen auswirken, oder?

Wir auch nicht. Trotzdem tut es uns leid, Ihnen sagen zu müssen, dass uns eine weitere 
Enttäuschung erwartet.

von Seite 135



Sie sind hier 4    137

Listen von Dateien

Nachdem die read_swim_data-Funktion eine return-Anweisung besitzt und das swimclub-Modul gespeichert 
ist, kehren Sie zu Ihrem Files.ipynb-Notebook zurück, klicken auf die erste Codezelle und benutzen dann Shift+Enter, 
um die beiden Zellen des Notebooks erneut auszuführen.

Obwohl Sie den Code des Moduls angepasst und gespeichert haben, gab es beim erneuten Ausführen der import-
Anweisung und einem weiteren Aufruf der Funktion keinen Unterschied. Es gibt immer noch keine Ausgaben. Was ist 
hier los?

Probefahrt

Drücken Sie »Shift+Enter« einmal …

… dann drücken Sie »Shift+Enter« 
noch einmal für die zweite Zelle.

Das ist ein bisschen peinlich, wenn nicht 
sogar ärgerlich. Der Code ist aktualisiert und 
 neu importiert, aber Jupyter führt trotzdem  

die ältere Funktion aus. Warum?!?

Ja, anscheinend ist hier etwas 
überhaupt nicht Ordnung …
Tatsächlich liegt das Problem hier aber nicht 
bei Jupyter, sondern beim Python-Interpre-
ter. Und (so seltsam das klingt) das ist sogar 
Absicht.

Offensichtlich hat hier jemand ein paar sehr 
ernste Fragen zu beantworten.



138    Kapitel 3

Wie import importiert

Import im Gespräch
Das heutige Interview führen wir mit 
Pythons import-Anweisung.

Von Kopf  bis Fuß: Danke, dass Sie sich Zeit für uns neh-
men, besonders so kurzfristig.

import: Es freut mich, hier zu sein.

VKbF: Zugegeben, die letzte Probefahrt hat mich etwas aus 
der Bahn geworfen. Ich habe meinen Code ergänzt und 
gespeichert und dann meine import-Anweisung erneut aus-
geführt, aber nichts hat sich verändert. Ist dieses Verhalten 
wirklich Absicht?

import: Ja.

VKbF:  Ernsthaft?

import: So läuft das bei mir eben …

VKbF: Aber wie kann ich dann mein Problem lösen?

import: Das ist gar nicht so schwer. Sie hätten neu starten 
müssen, anstatt neu zu importieren.

VKbF: Was?

import: Ich erkläre es Ihnen.

VKbF: Bitte. Ich bin ganz Ohr …

import: Als Sie Ihr neues Notebook erstellt haben, hat der 
Python-Interpreter eine neue Session gestartet, in der Ihr 
Code läuft. Die erste Aktion dieser Session war die Ausfüh-
rung von mir, Ihrer freundlichen import-Anweisung für Ihr 
swimclub-Modul.

VKbF: Ja. Und dann habe ich meine Funktion ausgeführt. 
Ich habe bemerkt, dass sie keine Daten zurückgibt, sie repa-
riert, gespeichert und dann mein Modul erneut importiert.

import: Und genau das ist eben nicht passiert.

VKbF: Jetzt haben Sie mich abgehängt …

import: Sie haben alles getan, was Sie gesagt haben, bis auf 
den letzten Schritt, den »mein Modul erneut importiert«-
Teil. Wissen Sie, man sagt, ich sei etwas schwerfällig, was die 
Ressourcennutzung angeht. Daher suchen die Entwickler des 
Python-Interpreters ständig nach Wegen, meine Verwendung 
zu verbessern. Ich brauche eine Weile, um meinen Job zu 
erledigen.

VKbF: Em … okay …

import: Und weil der Import manchmal sehr rechenintensiv 
sein kann, wurde entschieden, bereits importierte Module zu 
cachen (zwischenzuspeichern). Egal, wie oft ein Modul in einer 
bestimmten Python-Session importiert wird, es wird immer 
nur die erste import-Anweisung ausgeführt. Spätere Wieder-
holungen werden schlicht ignoriert.

VKbF: Das heißt, wenn ich beispielsweise import abc in 
drei Codezellen eingebe und für jede Shift+Enter drücke, 
wird nur die erste Zelle ausgeführt?

import: Na ja. Es werden schon alle Zellen ausgeführt, aber 
nur die erste import-Anweisung wird tatsächlich berücksich-
tigt. Der zweite und der dritte Import werden ignoriert, weil 
sich das Modul schon im Cache befindet.

VKbF: Und der Python-Interpreter ignoriert spätere Importe 
auch dann, wenn sich der Code zwischen dem ersten und 
zweiten oder dem zweiten und dritten import verändert, weil 
er darauf  optimiert ist, aus dem Cache zu lesen, richtig?

import: Ja.

VKbF: Aha! Langsam verstehe ich. Aber wie bekomme ich 
das Problem in den Griff ? Kann ich den Cache ausleeren 
oder den Interpreter anweisen, ihn zu ignorieren?

import: Die beste »Lösung« besteht darin, Ihre Python-Ses-
sion neu zu starten, anstatt Ihr Modul neu zu importieren. 
Dadurch findet der nächste Import in einer neuen Python-
Session statt, deren Cache zurückgesetzt wurde.

VKbF: Okay. Das erscheint mir sinnvoll. Aber wie starte ich 
meine Session am besten neu?

import: Bei Jupyter Notebook gibt es einen großen, 
leuchtenden »Restart«-Button am oberen Rand des VS-
Code-Fensters. Wenn Sie ihn anklicken, wird die vorherige 
Python-Session inklusive ihres Caches gelöscht und Sie kön-
nen von vorne anfangen.

VKbF: Großartig. Dann werde ich das gleich mal machen. 
Danke für Ihre Hilfe, import!

import: Gern geschehen!



Sie sind hier 4    139

Listen von Dateien

Haben wir beim dritten Mal mehr Glück?
Klicken Sie auf den Restart-Button oben in Ihrem VS-Code-Fenster (bei geöffnetem Files.ipynb-Notebook).

Ihr Klick startet die Python-Session neu. Dies setzt den Modulcache zurück und entfernt alle vorhandenen Variablen 
und ihre Werte aus dem Arbeitsspeicher. Nach dem Restart klicken wir gerne noch auf diesen Button:

Nachdem Ihre Python-Session neu gestartet wurde, nutzen wir Shift+Enter, um diese beiden Codezellen noch einmal 
auszuführen:

Probefahrt

Je nach Konfiguration Ihrer VS-Code-Installation werden Sie möglicherweise aufgefordert, den Neustart zu bestä-tigen. Kommen Sie dieser Aufforderung bei Bedarf nach.

Ein Klick auf diesen Button setzt 
die Jupyter-Schnittstelle zurück. 
Die Zellnummerierung sowie alle 
früheren Ausgaben verschwinden. Sie 
beginnen wieder mit einer sauberen, 
einsatzbereiten und zurückgesetzten 
Python-Sitzung.

Nach dem Neustart der Session wird nun auch der aktualisierte Code in Ihr Modul importiert, und die Funktion gibt die sechs Einzeldaten für Darius zurück.



140    Kapitel 3

Teilen macht Freude

Module ver wenden, um Code weiterzugeben
Im Moment besteht der Code in Ihrer Datei swimclub.py aus einer einzelnen import-
Anweisung, einer Konstantendefinition und einer einzelnen Funktion.

Sobald Sie Code in seine eigene Datei verschieben, wird er zu einem Python-Modul, 
das Sie bei Bedarf  importieren können.

Ich schreibe mir nur kurz auf,  
dass es »Modul PUNKT Funktion« lauten 

muss, um eine Funktion aus einem 
importierten Modul auszuführen.

Dies ist ein voll qualifizierter 
Name.
Wenn Sie Ihre Funktion mit der »Modul 
PUNKT Funktion«-Schreibweise auf-
rufen, ergänzen (oder »qualifizieren«) Sie 
den Funktionsnamen mit dem Namen 
des Moduls, das die Funktion enthält. 
Neben anderen Importtechniken ist dies 
eine der häufigsten. Weitere Beispiele 
hierfür werden Sie beim Durcharbeiten 
dieses Buchs finden.

import swimclub

 

 

swimclub.read_swim_data("Darius-13-100m-Fly.txt")

..

.

Importieren Sie Ihr Modul und …

… rufen Sie Ihre Funktion auf, indem Sie 
dem Funktionsnamen den Namen des Moduls 
gefolgt von einem PUNKT voranstellen.



Sie sind hier 4    141

Listen von Dateien

Ich störe nur ungern, aber 
irgendetwas stimmt hier nicht. Was 

hat es mit den runden Klammern 
um die sechs zurückgegebenen 

Datenwerte auf sich?

Gut gesehen.
Das ist jetzt vielleicht nicht die Erklärung, 
die Sie erwarten, aber die runden Klam-
mern sind Absicht.

Wir wollen hier etwas mehr ins Detail 
gehen, damit Sie die Vorgänge besser ver-
stehen. Nachdem wir vorhin die import-
Anweisung in die Mangel genommen 
haben, ist jetzt die Funktion an der Reihe.

Erfreuen Sie sich am Glanz der zurückgegebenen Daten
Sehen wir uns noch einmal die Daten an, die von Ihrem letzten Aufruf  der read_swim_data-Funk-
tion zurückgegeben wurden.

Die Funktion hat 
sechs Datenwerte 
zurückgegeben …

1. den Namen des Schwimmers

2. die Altersgruppe

3. die geschwommene Distanz
4.die Schwimmart

5. die Liste der Schwimmzeiten
6. die Durchschnittszeit



142    Kapitel 3

Hallo Funktion

Von Kopf  bis Fuß: Vielen Dank, dass Sie sich trotz Ihres 
vollen Terminkalenders die Zeit für ein Gespräch mit uns 
genommen haben.

Funktion: Kein Problem.

VKbF: Wie kommt es, dass Sie so beschäftigt sind?

Funktion: Ich bin immer und überall im Einsatz.

VKbF: Und Sie arbeiten mit allem?

Funktion: Wenn Sie die von mir akzeptierten Daten mei-
nen, dann ja. Ich nehme mit Freude alles entgegen, was Sie 
mir geben.

VKbF: Könnten Sie das ein wenig erläutern?

Funktion: Sicher. Sie können mir eine beliebige Anzahl von 
Argumentwerten übergeben, die ich gern auf  meine Para-
meter abbilde. Sie müssen nur dafür sorgen, dass die Anzahl 
übereinstimmt. Wenn ich zwei Parameter besitze, erwarte ich 
auch zwei Argumentwerte.

VKbF: Und was passiert, wenn ich Ihnen stattdessen ein 
oder drei Argumente übergebe?

Funktion: Dann bekomme ich schlechte Laune.

VKbF: Ich verstehe. So ist das also, hmm?

Funktion: Ja, diese Dinge nehme ich sehr genau. Außer 
natürlich, wenn einer meiner zwei Parameter als optional 
deklariert wurde.

VKbF: Und was passiert dann?

Funktion: Bleiben wir einen Moment bei meinem Beispiel 
mit den zwei Parametern. Wenn beispielsweise der zweite 
Parameter optional ist, übernehme ich, ohne zu murren, 
einen oder zwei Parameterwerte, und zwar ohne weiter nach-
zufragen.

VKbF: Aber was wird dem zweiten Parameter zugewiesen, 
wenn ich Sie nur mit einem Argument aufrufe?

Funktion: Typischerweise hat der Programmierer, der mich 
geschrieben hat, für diesen Fall einen Standardwert definiert, 
den ich dann verwende.

VKbF: Das klingt jetzt ziemlich komplex.

Funktion: Ist es aber eigentlich nicht. Und das braucht, ehr-
lich gesagt, auch längst nicht jede Funktion. Aber wenn Sie es 
brauchen, ist es ein Teil von mir. Ich bin da ziemlich flexibel.

VKbF: Und was ist mit den Rückgabewerten? Funktioniert 
das da genauso? Kann ich beliebig viele Werte zurückgeben?

Funktion: Nein.

VKbF: Ehrlich? Nein? Mehr haben Sie dazu nicht zu sagen?

Funktion: Nun ja. Ich dachte, das wäre klar. Stellen Sie sich 
mathematische Funktionen vor, die genau einen Wert zurück-
geben müssen. So ist das auch bei mir. Beliebig viele Werte 
rein, aber nur EIN Ergebnis zurück.

VKbF: Aber, ähhm … wenn ich den Aufruf  von read_
swim_data auf  der vorherigen Seite betrachte, dann sehe 
ich, dass doch sechs Ergebnisse zurückgegeben werden.

Funktion: Nein, es ist nur EIN Ergebnis.

VKbF: Was zum …

Funktion: Wenn Sie genau hinsehen, werden Sie die runden 
Klammern um die sechs Werte bemerken, richtig?

VKbF: Ja, aber …

Funktion: Hier gibt es kein »aber«. Diese Klammern umge-
ben ein einzelnes Tupel, das die sechs einzelnen Datenwerte 
enthält. Wie ich bereits sagte: Es wird EIN Ergebnis zurück-
gegeben. Entweder ein einzelner Datenwert oder ein einzel-
nes Tupel, das natürlich mehrere Werte enthalten kann.

VKbF: Aber der Code konvertiert die sechs Rückgabewerte 
doch gar nicht in ein Tupel.

Funktion: Ja ha … der Code nicht, aber ich. Das mache ich 
automatisch, wenn ich sehe, dass ein Programmierer ver-
sucht, mehr als EIN Ergebnis zurückzugeben. Sie können mir 
später danken.

VKbF: Nein, ich bedanke mich lieber gleich. Diese Informa-
tionen sind wirklich wichtig. Danke für das Gespräch!

Funktion: Ich helfe jederzeit gerne, die Dinge zu klären!

Die Funktion im Gespräch
Eine Unterhaltung mit Pythons Funktion.



Sie sind hier 4    143

Listen von Dateien

Funkt ionen geben be i Bedarf e in Tupel zurück
Wenn Sie eine Funktion aufrufen, die aussieht, als gäbe sie mehrere Ergebnisse zurück, soll-
ten Sie noch einmal überlegen. Das ist nämlich nicht der Fall. Stattdessen erhalten Sie ein 
einzelnes Tupel zurück, das eine Sammlung von Ergebnissen enthält, unabhängig davon, 
wie viele einzelne Ergebnisse es gibt.

Ich würde mich über ein 
paar Zusatzinformationen 
dahin gehend freuen, was 
ein Tupel eigentlich ist …

Sehr guter Vorschlag.
Wir wollen nicht behaupten, dass hier 
ein bisschen Gedankenlesen im Spiel 
ist, aber erschreckenderweise hatten 
wir genau die gleiche Idee.

Das sieht aus, als gäbe die Funktion sechs Objekte zurück. Das ist aber nicht erlaubt, denn Funktionen haben grundsätzlich nur einen Rückgabewert. Daher verpackt Python die zurückgegebenen Objekte in einem Tupel.

Tupel umgeben ihre Objekte mit runden Klammern (im Gegensatz zu Listen, für die eckige Klammern genutzt werden).


