
elasticity of hydrogels plays an important role in controlling transport. Future opportunities may focus on the synergistic role of network elasticity and reversible interaction in independently controlling the transport of various biomolecules in hydrogels. Such fundamental knowledge may also aid in understanding the selective transport mechanisms employed in biological systems, such as sperm selection by mucus layers.

1.4.2 Electrochemical Design of Hydrogel-2D Material Interfaces

The other challenge faced by *in-situ* electrochemical biosensors is their inability to detect biological events in high ionic strength solutions, ubiquitous in body fluids [166, 175]. The presence of 0.9 wt% mobile ions (Na^+ , K^+ , Cl^-) in body fluids leads to significant screening of electrical fields, which greatly reduces the sensitivity of electrochemical detection. For instance, the Debye length for 2D sensing materials in body fluids is typically below 1 nm, making it almost impossible to detect proteins (typically around 10 nm) above the Debye length [168]. A potential solution is to engineer the interface between the hydrogel and 2D material to enhance the field-effect sensing performance. Recent studies have shown that surface-functionalized 2D materials can achieve a 10-fold increase in Debye length from 0.82 to 9.6 nm in high ionic strength solutions [170]. One possibility is to graft crosslinked polymer networks of hydrogels onto existing sensing materials and explore the potential of optimizing the network topology and charge density in hydrogels to push the limits of electrochemical properties such as Debye length, surface capacitance, and band gap.

1.5 Flexible Hydrogel Biobattery

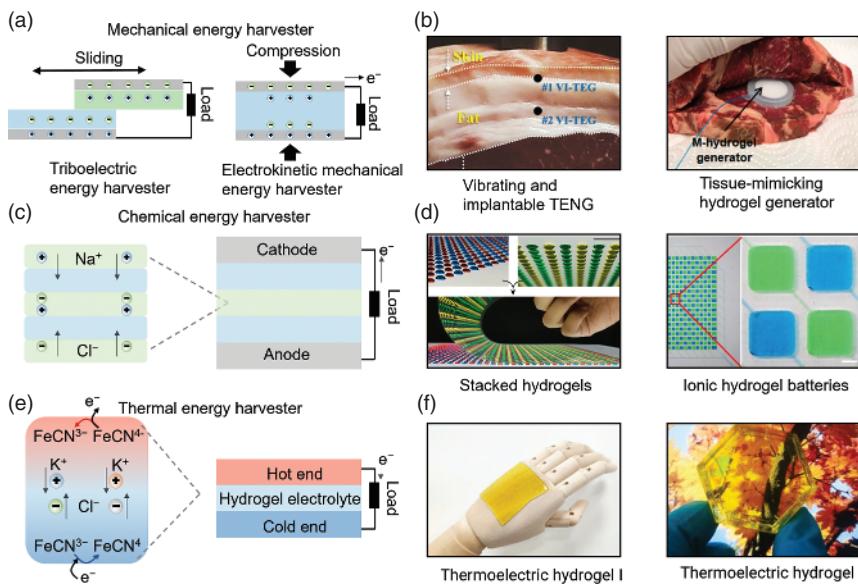

A flexible biobattery is a device that converts low-grade energy within the human body into usable energy and is essential for developing self-powered *in-situ* bioelectronic devices [176–179]. Hydrogels are a promising material for use in these devices because they are porous and can modulate ion and electron transport while minimizing potential leakage compared to traditional organic aqueous electrolytes. Furthermore, hydrogels are biocompatible and soft, which reduces damage to surrounding tissues. However, the power outputs of flexible hydrogel biobatteries are still relatively low and do not meet the power requirements of most *in-situ* bioelectronic devices. Figure 1.10a shows the power range and operation time requirements of common biomedical devices [180]. To develop the next generation of self-sustaining *in-situ* bioelectronic devices, high-performing hydrogels must be leveraged to harness various forms of energy within the human body (Figure 1.10b). This potential remains largely unexplored but is highly desirable. This section will discuss recent efforts in exploring the potential of powering *in-situ* bioelectronic devices through mechanical, chemical, and thermal energy harvesters (Figure 1.10c).

Figure 1.10 Flexible hydrogel batteries to self-power *in-situ* bioelectronic devices. (a) Examples of common implantable medical devices, with their required power supply and operation time (Source: Ref. [180]/Oxford University Press). (b) Schematic illustrations of the energy harvester working inside the intestine and (c) three forms of energy harvesting, including mechanical, chemical, and thermal energy, generated within the human body.

1.5.1 Mechanical Energy Harvester

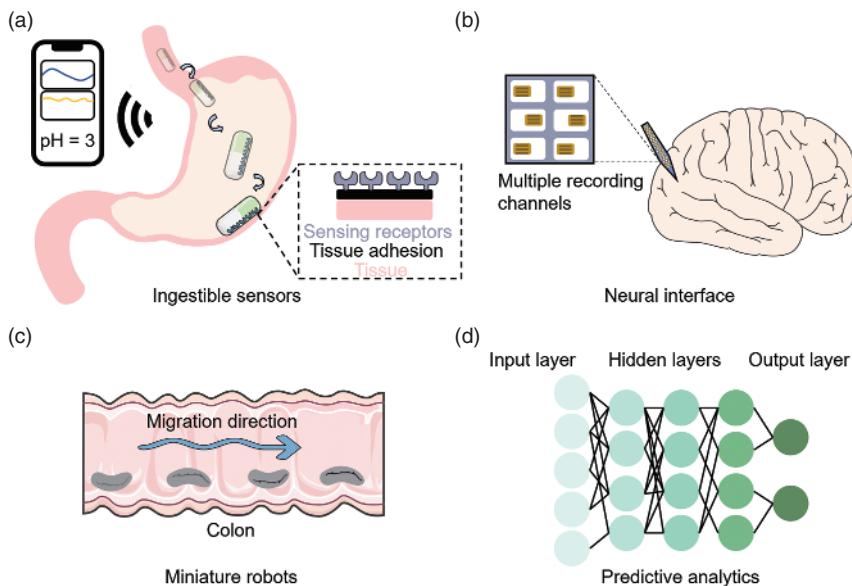
Mechanical energy harvesters are devices that can convert the mechanical energy of the human body or organs into electrical energy for powering *in-situ* bioelectronic devices. One prime example of a mechanical energy harvester is the triboelectric nanogenerators (TENGs) [181–183], which generates an electrostatic potential difference between two materials of diverse polarities due to the triboelectric effect, causing a transfer of charges and the formation of an electric potential difference between them (Figure 1.11a) [177, 190–192]. Figure 1.11b presents a representative example of using ultrasound to induce vibrations and harness triboelectricity for in-body powering [184, 185]. Another way to harvest mechanical energy in the body is by leveraging the fluid-electro-mechanical coupling

Figure 1.11 Schematic illustration of the working mechanism of (a) mechanical energy harvester with (b) examples (Source: Ref. [184] and Ref. [185]), (c) chemical energy harvester with (d) examples (Source: Ref. [186] and Ref. [187]), and (e) thermal energy harvester with (f) examples (Source: Ref. [188] and Ref. [189]. © 2022/Elsevier).

of electrokinetic streams in porous materials to generate electricity [193, 194]. Electrokinetic mechanical energy harvesters typically involve applying external forces, such as pressure, to drive the movement of micro-/nanofluidic water across a porous membrane, thereby causing the motion of ions to produce electricity. Unlike conventional TENGs, electrokinetic mechanical energy harvester can harvest low-frequency body motions while potentially producing high power output [195].

1.5.2 Chemical Energy Harvesters

Chemical energy harvesters are devices that convert chemical energy into electrical energy through chemical reactions in an electrolyte (Figure 1.11c) [196, 197]. These devices usually have two electrodes and an electrolyte, where the electrolyte acts as a mediator for the chemical reactions. The chemical reactions that occur between the positive and negative electrodes cause the flow of electrons within the electrolyte, thus generating electrical energy that can be used in the circuit. Hydrogel, with its watery nature, is an excellent carrier for chemicals, and acts as the electrolyte [198–200]. Drawing inspiration from the electric eel's power generation mechanism, Yang and Mayer and coworkers harnessed the gradients of ions in hydrogels to develop soft, flexible, transparent, and biocompatible hydrogel biobatteries, generating 110 V at open circuit or 27 mW/m² per hydrogel cell, which


is a significant achievement in the realm of electrochemical energy harvesting via hydrogels (Figure 1.11d) [186, 187]. Despite the abundant chemical reactions that occur within the human body (such as those that occur during digestion resulting in pH differences), there has been no significant progress in *in-situ* chemical energy harvesting. The main barriers are related to unstable ion concentrations and uncontrolled ion types in body fluids. The stability and size of the device are still the main challenges.

1.5.3 Thermal Energy Harvesters

Thermal energy harvesters using thermoelectric materials (Figure 1.11e), such as thermoelectric hydrogels, offer the potential to harvest low-grade body heat and power *in-situ* bioelectronic devices. These soft and biocompatible thermoelectric hydrogels are regarded as favorable alternatives to conventional thermoelectric materials [201–205]. Recent studies by Chen and Liu and coworkers have demonstrated a giant positive thermopower of 17 mV/K in an ionic thermoelectric hydrogel by harnessing synergistic thermo-diffusion and thermo-galvanic effects. The thermos-diffusion effect is dominated by the presence of ions (KCl, NaCl, and KNO₃), while the thermo-galvanic effect is governed by a redox couple (Fe(CN)₆⁴⁻)/(Fe(CN)₆³⁻), also adopted in other thermoelectric hydrogels (Figure 1.11f) [188, 189]. While thermoelectric hydrogels have significant potential for *in-situ* bioelectronics, the low power output and poor mechanical properties of these materials remain key limitations. Overcoming these limitations through further research and development will be crucial to fully exploit the unique advantages of thermoelectric hydrogels in *in-situ* bioelectronics.

1.6 Concluding Remarks

Over the past few years, we have seen many exciting advances and examples in the field of *in-situ* hydrogel bioelectronics that suggest great potential of high-performing hydrogels for many important applications. We will conclude this chapter with a set of opportunities by integrating interdisciplinary efforts in various areas of *in-situ* hydrogel bioelectronics, including ingestible sensors, neural interfaces, miniature robots, and data analytics. Ingestible sensors are one area where hydrogel-based bioelectronics can be leveraged (Figure 1.12a). These sensors can be designed to be swallowed and pass through the gastrointestinal tract, allowing for noninvasive monitoring of various biomarkers in real time. With the integration of hydrogel-based sensors, these devices can provide more accurate and reliable data, as hydrogels can respond to changes in pH, temperature, and other environmental factors [32]. Neural interface technology is another area where hydrogel-based bioelectronics can be applied (Figure 1.12b) [206–209]. By using hydrogels as a platform for neural interfaces, these devices can be made more biocompatible and less invasive, reducing the risk of rejection or other complications. With the integration of hydrogel-based sensors and actuators, these

Figure 1.12 Future opportunities of *in-situ* hydrogel bioelectronics. Schematic illustrations of (a) ingestible sensors, (b) neural interfaces, (c) miniature robots, and (d) predictive analytics.

interfaces can provide more accurate and precise control over prosthetic devices or assistive technologies, allowing for more natural movements and interactions with the environment. Miniature robots are also an exciting area of research for *in-situ* hydrogel bioelectronics (Figure 1.12c) [210, 211]. With the use of hydrogels, these robots can be made more flexible and compliant, allowing for safer and more effective integration with the body. By incorporating hydrogel-based sensors and actuators, these robots can be controlled and manipulated to perform targeted drug delivery, tissue engineering, and surgical procedures. Finally, the integration of data analytics and machine learning algorithms is crucial for unlocking the full potential of *in-situ* hydrogel bioelectronics (Figure 1.12d) [212, 213]. With the vast amounts of data generated by these devices, there is a need for advanced analytics tools to help interpret and make sense of the data. By leveraging these tools, we can gain new insights into biological systems and develop more effective treatments and therapies.

Acknowledgments

We acknowledge the startup funds from the College of Engineering at Michigan State University. T. H. W is supported by financial support from the Biomedical Engineering Department at MSU.

References

- 1 Yu, Y., Nyein, H.Y.Y., Gao, W. et al. (2020). Flexible electrochemical bioelectronics: the rise of in situ bioanalysis. *Advanced Materials* 32 (15): 1902083.
- 2 Kim, D.W., Song, K.I., Seong, D. et al. (2022). Electrostatic–mechanical synergistic in situ multiscale tissue adhesion for sustainable residue-free bioelectronics interfaces. *Advanced Materials* 34 (5): 2105338.
- 3 Rawla, P., Sunkara, T., and Barsouk, A. (2019). Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. *Gastroenterology Review/Przeglqd Gastroenterologiczny* 14 (2): 89–103.
- 4 Tang, X., Shen, H., Siyuan, Z. et al. (2023). Flexible brain–computer interfaces. *Nature Electronics* 6: 1–10.
- 5 Zhao, S., Tang, X., Tian, W. et al. (2023). Tracking neural activity from the same cells during the entire adult life of mice. *Nature Neuroscience* 26: 1–15.
- 6 Steinmetz, N.A., Aydin, C., Lebedeva, A. et al. (2021). Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. *Science* 372 (6539): eabf4588.
- 7 Zheng, Q., Shi, B., Fan, F. et al. (2014). In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. *Advanced Materials* 26 (33): 5851–5856.
- 8 Ryu, H., Park, H., Kim, M.K. et al. (2021). Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators. *Nature Communications* 12 (1): 4374.
- 9 Ouyang, H., Liu, Z., Li, N. et al. (2019). Symbiotic cardiac pacemaker. *Nature Communications* 10 (1): 1–10.
- 10 Yuk, H., Wu, J., and Zhao, X. (2022). Hydrogel interfaces for merging humans and machines. *Nature Reviews Materials* 7 (12): 935–952.
- 11 Liu, X., Liu, J., Lin, S. et al. (2020). Hydrogel machines. *Materials Today* 36: 102–124.
- 12 Zhao, X., Chen, X., Yuk, H. et al. (2021). Soft materials by design: unconventional polymer networks give extreme properties. *Chemical Reviews* 121 (8): 4309–4372.
- 13 Lu, B., Yuk, H., Lin, S. et al. (2019). Pure pedot: Pss hydrogels. *Nature Communications* 10 (1): 1043.
- 14 Lin, X., Zhao, X., Xu, C. et al. (2022). Progress in the mechanical enhancement of hydrogels: fabrication strategies and underlying mechanisms. *Journal of Polymer Science* 60 (17): 2525–2542.
- 15 Kuang, X. et al. (2022). Functional tough hydrogels: design, processing, and biomedical applications. *Accounts of Materials Research* 4: 101–104.
- 16 Yuk, H., Lu, B., and Zhao, X. (2019). Hydrogel bioelectronics. *Chemical Society Reviews* 48 (6): 1642–1667.
- 17 Shi, Z., Arıcan, M.O., Zhou, T. et al. (2016). Electroconductive natural polymer-based hydrogels. *Biomaterials* 111: 40–54.
- 18 Lin, S., Yuk, H., Zhang, T. et al. (2016). Stretchable hydrogel electronics and devices. *Advanced Materials* 28 (22): 4497–4505.
- 19 Hu, L., Chee, P.L., Sugiarto, S. et al. (2022). Hydrogel-based flexible electronics. *Advanced Materials* 35: 2205326.

- 20 Guo, X., Li, J., Wang, F. et al. (2022). Application of conductive polymer hydrogels in flexible electronics. *Journal of Polymer Science* 60 (18): 2635–2662.
- 21 Gong, J.P., Katsuyama, Y., Kurokawa, T. et al. (2003). Double-network hydrogels with extremely high mechanical strength. *Advanced Materials* 15 (14): 1155–1158.
- 22 Sun, T.L., Kurokawa, T., Kuroda, S. et al. (2013). Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. *Nature Materials* 12 (10): 932–937.
- 23 Sun, J.-Y., Zhao, X., Illeperuma, W.R.K. et al. (2012). Highly stretchable and tough hydrogels. *Nature* 489 (7414): 133–136.
- 24 Yang, J., Bai, R., Chen, B. et al. (2020). Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics. *Advanced Functional Materials* 30 (2): 1901693.
- 25 Yang, H., Li, C., Tang, J. et al. (2019). Strong and degradable adhesion of hydrogels. *ACS Applied Bio Materials* 2 (5): 1781–1786.
- 26 Steck, J., Yang, J., and Suo, Z. (2019). Covalent topological adhesion. *ACS Macro Letters* 8 (6): 754–758.
- 27 Yuk, H., Zhang, T., Lin, S. et al. (2016). Tough bonding of hydrogels to diverse non-porous surfaces. *Nature Materials* 15 (2): 190–196.
- 28 Liu, J., Lin, S., Liu, X. et al. (2020). Fatigue-resistant adhesion of hydrogels. *Nature Communications* 11 (1): 1071.
- 29 Li, J., Celiz, A.D., Yang, J. et al. (2017). Tough adhesives for diverse wet surfaces. *Science* 357 (6349): 378–381.
- 30 Wirthl, D., Pichler, R., Drack, M. et al. (2017). Instant tough bonding of hydrogels for soft machines and electronics. *Science Advances* 3 (6): e1700053.
- 31 Deng, J., Yuk, H., Wu, J. et al. (2021). Electrical bioadhesive interface for bioelectronics. *Nature Materials* 20 (2): 229–236.
- 32 Liu, X., Steiger, C., Lin, S. et al. (2019). Ingestible hydrogel device. *Nature Communications* 10 (1): 493.
- 33 Li, S., Cong, Y., and Fu, J. (2021). Tissue adhesive hydrogel bioelectronics. *Journal of Materials Chemistry B* 9 (22): 4423–4443.
- 34 Xie, C., Wang, X., He, H. et al. (2020). Mussel-inspired hydrogels for self-adhesive bioelectronics. *Advanced Functional Materials* 30 (25): 1909954.
- 35 Jia, M. and Rolandi, M. (2020). Soft and ion-conducting materials in bioelectronics: from conducting polymers to hydrogels. *Advanced Healthcare Materials* 9 (5): 1901372.
- 36 Dechiraju, H., Jia, M., Luo, L. et al. (2022). Ion-conducting hydrogels and their applications in bioelectronics. *Advanced Sustainable Systems* 6 (2): 2100173.
- 37 Yu, Q., Zheng, Z., Dong, X. et al. (2021). Mussel-inspired hydrogels as tough, self-adhesive and conductive bioelectronics: a review. *Soft Matter* 17 (39): 8786–8804.
- 38 Storm, C., Pastore, J.J., MacKintosh, F.C. et al. (2005). Nonlinear elasticity in biological gels. *Nature* 435 (7039): 191–194.
- 39 Ganji, F., Vasheghani, F.S., and Vasheghani, F.E. (2010). Theoretical description of hydrogel swelling: a review. *Iranian Polymer Journal* 19 (5): 375–398.

- 40** Kim, S.W., Bae, Y.H., and Okano, T. (1992). Hydrogels: swelling, drug loading, and release. *Pharmaceutical Research* 9: 283–290.
- 41** Holback, H., Yeo, Y., and Park, K. (2011). Hydrogel swelling behavior and its biomedical applications. In: *Biomedical Hydrogels* (ed. S. Rimmer), 3–24. Elsevier.
- 42** Chen, J., Park, H., and Park, K. (1999). Synthesis of superporous hydrogels: hydrogels with fast swelling and superabsorbent properties. *Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials* 44 (1): 53–62.
- 43** Canal, T. and Peppas, N.A. (1989). Correlation between mesh size and equilibrium degree of swelling of polymeric networks. *Journal of Biomedical Materials Research* 23 (10): 1183–1193.
- 44** Hong, W., Zhao, X., Zhou, J. et al. (2008). A theory of coupled diffusion and large deformation in polymeric gels. *Journal of the Mechanics and Physics of Solids* 56 (5): 1779–1793.
- 45** Chester, S.A. and Anand, L. (2010). A coupled theory of fluid permeation and large deformations for elastomeric materials. *Journal of the Mechanics and Physics of Solids* 58 (11): 1879–1906.
- 46** Zhao, X., Huebsch, N., Mooney, D.J. et al. (2010). Stress-relaxation behavior in gels with ionic and covalent crosslinks. *Journal of Applied Physics* 107 (6): 063509.
- 47** Long, R., Mayumi, K., Creton, C. et al. (2014). Time dependent behavior of a dual cross-link self-healing gel: theory and experiments. *Macromolecules* 47 (20): 7243–7250.
- 48** Guo, J., Long, R., Mayumi, K. et al. (2016). Mechanics of a dual cross-link gel with dynamic bonds: steady state kinetics and large deformation effects. *Macromolecules* 49 (9): 3497–3507.
- 49** Mao, Y., Lin, S., Zhao, X. et al. (2017). A large deformation viscoelastic model for double-network hydrogels. *Journal of the Mechanics and Physics of Solids* 100: 103–130.
- 50** Grindy, S.C., Learsch, R., Mozhdehi, D. et al. (2015). Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics. *Nature Materials* 14 (12): 1210–1216.
- 51** Zhang, T., Lin, S., Yuk, H. et al. (2015). Predicting fracture energies and crack-tip fields of soft tough materials. *Extreme Mechanics Letters* 4: 1–8.
- 52** Qi, Y., Caillard, J., and Long, R. (2018). Fracture toughness of soft materials with rate-independent hysteresis. *Journal of the Mechanics and Physics of Solids* 118: 341–364.
- 53** Long, R. and Hui, C.-Y. (2016). Fracture toughness of hydrogels: measurement and interpretation. *Soft Matter* 12 (39): 8069–8086.
- 54** Bai, R., Yang, Q., Tang, J. et al. (2017). Fatigue fracture of tough hydrogels. *Extreme Mechanics Letters* 15: 91–96.
- 55** Bai, R., Yang, J., and Suo, Z. (2019). Fatigue of hydrogels. *European Journal of Mechanics-A/Solids* 74: 337–370.

- 56 Lin, S., Liu, X., Liu, J. et al. (2019). Anti-fatigue-fracture hydrogels. *Science Advances* 5 (1): eaau8528.
- 57 Li, X., Cui, K., Sun, T.L. et al. (2020). Mesoscale bicontinuous networks in self-healing hydrogels delay fatigue fracture. *Proceedings of the National Academy of Sciences* 117 (14): 7606–7612.
- 58 Lake, G. and Lindley, P. (1965). The mechanical fatigue limit for rubber. *Journal of Applied Polymer Science* 9 (4): 1233–1251.
- 59 Biot, M.A. (1941). General theory of three-dimensional consolidation. *Journal of Applied Physics* 12 (2): 155–164.
- 60 Flory, P.J. (1953). *Principles of Polymer Chemistry*. Cornell University Press.
- 61 Lake, G. and Thomas, A. (1967). The strength of highly elastic materials. *Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences* 300 (1460): 108–119.
- 62 Treloar, L.G. (1975). *The Physics of Rubber Elasticity*. OUP Oxford.
- 63 De Gennes, P.-G. and Gennes, P.-G. (1979). *Scaling Concepts in Polymer Physics*. Cornell University Press.
- 64 Gent, A.N. (1996). A new constitutive relation for rubber. *Rubber Chemistry and Technology* 69 (1): 59–61.
- 65 Boyce, M.C. and Arruda, E.M. (2000). Constitutive models of rubber elasticity: a review. *Rubber Chemistry and Technology* 73 (3): 504–523.
- 66 Rubinstein, M. and Colby, R.H. (2003). *Polymer Physics*, vol. 23. New York: Oxford University Press.
- 67 Mark, J.E. and Erman, B. (2007). *Rubberlike Elasticity: A Molecular Primer*. Cambridge University Press.
- 68 Argon, A.S. (2013). *The Physics of Deformation and Fracture of Polymers*. Cambridge: New York.
- 69 Creton, C. and Ciccotti, M. (2016). Fracture and adhesion of soft materials: a review. *Reports on Progress in Physics* 79 (4): 046601.
- 70 Lin, S., Mao, Y., Radovitzky, R. et al. (2017). Instabilities in confined elastic layers under tension: fringe, fingering and cavitation. *Journal of the Mechanics and Physics of Solids* 106: 229–256.
- 71 Baby, D.K. (2020). Rheology of hydrogels. In: *Rheology of Polymer Blends and Nanocomposites* (ed. S. Thomas, C. Sarathchandran, and N. Chandran), 193–204. Elsevier.
- 72 Hu, Y., Zhao, X., Vlassak, J.J. et al. (2010). Using indentation to characterize the poroelasticity of gels. *Applied Physics Letters* 96 (12): 121904.
- 73 Zhong, M., Wang, R., Kawamoto, K. et al. (2016). Quantifying the impact of molecular defects on polymer network elasticity. *Science* 353 (6305): 1264–1268.
- 74 Gu, Y., Zhao, J., and Johnson, J.A. (2019). A (macro) molecular-level understanding of polymer network topology. *Trends in Chemistry* 1 (3): 318–334.
- 75 Rivlin, R. and Thomas, A.G. (1953). Rupture of rubber. I. Characteristic energy for tearing. *Journal of Polymer Science* 10 (3): 291–318.
- 76 Wang, Y., Yin, T., and Suo, Z. (2021). Polyacrylamide hydrogels. III. Lap shear and peel. *Journal of the Mechanics and Physics of Solids* 150: 104348.
- 77 Bai, R., Chen, B., Yang, J. et al. (2019). Tearing a hydrogel of complex rheology. *Journal of the Mechanics and Physics of Solids* 125: 749–761.

- 78 Zhao, X. (2014). Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. *Soft Matter* 10 (5): 672–687.
- 79 Tang, J., Li, J., Vlassak, J.J. et al. (2017). Fatigue fracture of hydrogels. *Extreme Mechanics Letters* 10: 24–31.
- 80 Lin, S. and Zhao, X. (2020). Fracture of polymer networks with diverse topological defects. *Physical Review E* 102 (5): 052503.
- 81 James, H.M. and Guth, E. (1943). Theory of the elastic properties of rubber. *The Journal of Chemical Physics* 11 (10): 455–481.
- 82 Cao, J., Li, J., Chen, Y. et al. (2018). Dual physical crosslinking strategy to construct moldable hydrogels with ultrahigh strength and toughness. *Advanced Functional Materials* 28 (23): 1800739.
- 83 Hu, Z. and Chen, G. (2014). Novel nanocomposite hydrogels consisting of layered double hydroxide with ultrahigh tensibility and hierarchical porous structure at low inorganic content. *Advanced Materials* 26 (34): 5950–5956.
- 84 Tsukeshiba, H., Huang, M., Na, Y.H. et al. (2005). Effect of polymer entanglement on the toughening of double network hydrogels. *The Journal of Physical Chemistry B* 109 (34): 16304–16309.
- 85 Gong, J.P. (2010). Why are double network hydrogels so tough? *Soft Matter* 6 (12): 2583–2590.
- 86 de Gennes, P.-G. (1996). Soft adhesives. *Langmuir* 12 (19): 4497–4500.
- 87 Chen, Q. et al. (2016). Engineering of tough double network hydrogels. *Macromolecular Chemistry and Physics* 217 (9): 1022–1036.
- 88 Li, J., Suo, Z., and Vlassak, J.J. (2014). Stiff, strong, and tough hydrogels with good chemical stability. *Journal of Materials Chemistry B* 2 (39): 6708–6713.
- 89 Wang, Z., Zheng, X., Ouchi, T. et al. (2021). Toughening hydrogels through force-triggered chemical reactions that lengthen polymer strands. *Science* 374 (6564): 193–196.
- 90 Luo, F., Sun, T.L., Nakajima, T. et al. (2014). Crack blunting and advancing behaviors of tough and self-healing polyampholyte hydrogel. *Macromolecules* 47 (17): 6037–6046.
- 91 Haque, M.A., Kurokawa, T., and Gong, J.P. (2012). Super tough double network hydrogels and their application as biomaterials. *Polymer* 53 (9): 1805–1822.
- 92 Chen, C., Wang, Z., and Suo, Z. (2017). Flaw sensitivity of highly stretchable materials. *Extreme Mechanics Letters* 10: 50–57.
- 93 Lin, S., Londono, C.D., Zheng, D. et al. (2022). An extreme toughening mechanism for soft materials. *Soft Matter* 18 (31): 5742–5749.
- 94 Sun, T.L., Londono, C.D., Zheng, D. et al. (2017). Bulk energy dissipation mechanism for the fracture of tough and self-healing hydrogels. *Macromolecules* 50 (7): 2923–2931.
- 95 Liu, C., Morimoto, N., Jiang, L. et al. (2021). Tough hydrogels with rapid self-reinforcement. *Science* 372 (6546): 1078–1081.
- 96 Kim, J., Zhang, G., Shi, M. et al. (2021). Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. *Science* 374 (6564): 212–216.

- 97 Zheng, D., Lin, S., Ni, J. et al. (2022). Fracture and fatigue of entangled and unentangled polymer networks. *Extreme Mechanics Letters* 51: 101608.
- 98 Norioka, C., Inamoto, Y., Hajime, C. et al. (2021). A universal method to easily design tough and stretchable hydrogels. *NPG Asia Materials* 13 (1): 34.
- 99 Zhang, E., Bai, R., Morelle, X.P. et al. (2018). Fatigue fracture of nearly elastic hydrogels. *Soft Matter* 14 (18): 3563–3571.
- 100 Lin, S., Liu, J., Liu, X. et al. (2019). Muscle-like fatigue-resistant hydrogels by mechanical training. *Proceedings of the National Academy of Sciences* 116 (21): 10244–10249.
- 101 Bai, R., Yang, J., Morelle, X.P. et al. (2018). Fatigue fracture of self-recovery hydrogels. *ACS Macro Letters* 7 (3): 312–317.
- 102 Liang, X., Chen, G., Lin, S. et al. (2022). Bioinspired 2D isotropically fatigue-resistant hydrogels. *Advanced Materials* 34 (8): 2107106.
- 103 Hua, M., Wu, S., Ma, Y. et al. (2021). Strong tough hydrogels via the synergy of freeze-casting and salting out. *Nature* 590 (7847): 594–599.
- 104 Guo, X., Dong, X., Zou, G. et al. (2023). Strong and tough fibrous hydrogels reinforced by multiscale hierarchical structures with multimechanisms. *Science Advances* 9 (2): eadf7075.
- 105 Ni, J., Lin, S., Qin, Z. et al. (2021). Strong fatigue-resistant nanofibrous hydrogels inspired by lobster underbelly. *Matter* 4 (6): 1919–1934.
- 106 Xiang, C., Wang, Z., Yang, C. et al. (2020). Stretchable and fatigue-resistant materials. *Materials Today* 34: 7–16.
- 107 Li, X., Cui, K., Kurokawa, T. et al. (2021). Effect of mesoscale phase contrast on fatigue-delaying behavior of self-healing hydrogels. *Science Advances* 7 (16): eabe8210.
- 108 Edward, J.T. (1970). Molecular volumes and the Stokes-Einstein equation. *Journal of Chemical Education* 47 (4): 261.
- 109 Moncure, P.J., Simon, Z.C., Millstone, J.E. et al. (2022). Relationship between gel mesh and particle size in determining nanoparticle diffusion in hydrogel nanocomposites. *The Journal of Physical Chemistry B* 126 (22): 4132–4142.
- 110 Cai, L.-H., Panyukov, S., and Rubinstein, M. (2015). Hopping diffusion of nanoparticles in polymer matrices. *Macromolecules* 48 (3): 847–862.
- 111 Yang, Y.J., Mai, D.J., Dursch, T.J. et al. (2018). Nucleopore-inspired polymer hydrogels for selective biomolecular transport. *Biomacromolecules* 19 (10): 3905–3916.
- 112 Gu, Y., Distler, M.E., Cheng, H.F. et al. (2021). A general DNA-gated hydrogel strategy for selective transport of chemical and biological cargos. *Journal of the American Chemical Society* 143 (41): 17200–17208.
- 113 Maguire, L., Stefferson, M., Betterton, M.D. et al. (2019). Design principles of selective transport through biopolymer barriers. *Physical Review E* 100 (4): 042414.
- 114 Cheng, T., Zhang, Y.Z., Wang, S. et al. (2021). Conductive hydrogel-based electrodes and electrolytes for stretchable and self-healable supercapacitors. *Advanced Functional Materials* 31 (24): 2101303.

- 115 Deng, Z., Yu, R., and Guo, B. (2021). Stimuli-responsive conductive hydrogels: design, properties, and applications. *Materials Chemistry Frontiers* 5 (5): 2092–2123.
- 116 Shen, Z., Zhang, Z., Zhang, N. et al. (2022). High-stretchability, ultralow-hysteresis conducting polymer hydrogel strain sensors for soft machines. *Advanced Materials* 34 (32): 2203650.
- 117 Fu, F., Wang, J., Zeng, H. et al. (2020). Functional conductive hydrogels for bioelectronics. *ACS Materials Letters* 2 (10): 1287–1301.
- 118 Huang, H., Han, L., Li, J. et al. (2020). Super-stretchable, elastic and recoverable ionic conductive hydrogel for wireless wearable, stretchable sensor. *Journal of Materials Chemistry A* 8 (20): 10291–10300.
- 119 Huang, H., Han, L., Fu, X. et al. (2020). Multiple stimuli responsive and identifiable zwitterionic ionic conductive hydrogel for bionic electronic skin. *Advanced Electronic Materials* 6 (7): 2000239.
- 120 Shi, Y., Ma, C., Peng, L. et al. (2015). Conductive “smart” hybrid hydrogels with PNIPAM and nanostructured conductive polymers. *Advanced Functional Materials* 25 (8): 1219–1225.
- 121 Mondal, S., Das, S., and Nandi, A.K. (2020). A review on recent advances in polymer and peptide hydrogels. *Soft Matter* 16 (6): 1404–1454.
- 122 Zhang, C., Wang, M., Jiang, C. et al. (2022). Highly adhesive and self-healing γ -PGA/PEDOT: PSS conductive hydrogels enabled by multiple hydrogen bonding for wearable electronics. *Nano Energy* 95: 106991.
- 123 Shi, J., Chen, X., Li, G. et al. (2019). A liquid PEDOT: PSS electrode-based stretchable triboelectric nanogenerator for a portable self-charging power source. *Nanoscale* 11 (15): 7513–7519.
- 124 Guzinski, M., Jarvis, J.M., Perez, F. et al. (2017). PEDOT (PSS) as solid contact for ion-selective electrodes: the influence of the PEDOT (PSS) film thickness on the equilibration times. *Analytical Chemistry* 89 (6): 3508–3516.
- 125 Sun, X., Yao, F., and Li, J. (2020). Nanocomposite hydrogel-based strain and pressure sensors: a review. *Journal of Materials Chemistry A* 8 (36): 18605–18623.
- 126 Han, L., Yan, L., Wang, M. et al. (2018). Transparent, adhesive, and conductive hydrogel for soft bioelectronics based on light-transmitting polydopamine-doped polypyrrole nanofibrils. *Chemistry of Materials* 30 (16): 5561–5572.
- 127 Ohm, Y., Liao, J., Luo, Y. et al. (2022). Reconfigurable electrical networks within a conductive hydrogel composite. *Advanced Materials* 35: 2209408.
- 128 Hui, Y., Yao, Y., Qian, Q. et al. (2022). Three-dimensional printing of soft hydrogel electronics. *Nature Electronics* 5: 1–11.
- 129 Yasuda, K., Gong, J.P., Katsuyama, Y. et al. (2005). Biomechanical properties of high-toughness double network hydrogels. *Biomaterials* 26 (21): 4468–4475.
- 130 Kong, H.J., Wong, E., and Mooney, D.J. (2003). Independent control of rigidity and toughness of polymeric hydrogels. *Macromolecules* 36 (12): 4582–4588.
- 131 Tuncaboylu, D.C., Sari, M., Oppermann, W. et al. (2011). Tough and self-healing hydrogels formed via hydrophobic interactions. *Macromolecules* 44 (12): 4997–5005.

- 132** Abdurrahmanoglu, S., Can, V., and Okay, O. (2009). Design of high-toughness polyacrylamide hydrogels by hydrophobic modification. *Polymer* 50 (23): 5449–5455.
- 133** Seitz, M.E., Martina, D., Baumberger, T. et al. (2009). Fracture and large strain behavior of self-assembled triblock copolymer gels. *Soft Matter* 5 (2): 447–456.
- 134** Haraguchi, K. and Takehisa, T. (2002). Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. *Advanced Materials* 14 (16): 1120–1124.
- 135** Haraguchi, K. and Li, H.J. (2005). Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels. *Angewandte Chemie International Edition* 44 (40): 6500–6504.
- 136** Sakai, T., Matsunaga, T., Yamamoto, Y. et al. (2008). Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. *Macromolecules* 41 (14): 5379–5384.
- 137** Sakai, T., Akagi, Y., Matsunaga, T. et al. (2010). Highly elastic and deformable hydrogel formed from tetra-arm polymers. *Macromolecular Rapid Communications* 31 (22): 1954–1959.
- 138** Liao, I.C., Moutos, F.T., Estes, B.T. et al. (2013). Composite three-dimensional woven scaffolds with interpenetrating network hydrogels to create functional synthetic articular cartilage. *Advanced Functional Materials* 23 (47): 5833–5839.
- 139** Lin, S., Cao, C., Wang, Q. et al. (2014). Design of stiff, tough and stretchy hydrogel composites via nanoscale hybrid crosslinking and macroscale fiber reinforcement. *Soft Matter* 10 (38): 7519–7527.
- 140** King, D.R., Sun, T.L., Huang, Y. et al. (2015). Extremely tough composites from fabric reinforced polyampholyte hydrogels. *Materials Horizons* 2 (6): 584–591.
- 141** Nezakati, T., Seifalian, A., Tan, A. et al. (2018). Conductive polymers: opportunities and challenges in biomedical applications. *Chemical Reviews* 118 (14): 6766–6843.
- 142** Feig, V.R., Tran, H., Lee, M. et al. (2018). Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. *Nature Communications* 9 (1): 2740.
- 143** Kang, J., Mun, J., Zheng, Y. et al. (2022). Tough-interface-enabled stretchable electronics using non-stretchable polymer semiconductors and conductors. *Nature Nanotechnology* 17: 1–7.
- 144** Han, M., Chen, L., Aras, K. et al. (2020). Catheter-integrated soft multilayer electronic arrays for multiplexed sensing and actuation during cardiac surgery. *Nature Biomedical Engineering* 4 (10): 997–1009.
- 145** Asulin, M., Michael, I., Shapira, A. et al. (2021). One-step 3D printing of heart patches with built-in electronics for performance regulation. *Advanced Science* 8 (9): 2004205.
- 146** Yan, Z., Zhang, F., Liu, F. et al. (2016). Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. *Science Advances* 2 (9): e1601014.
- 147** Hong, G., Yang, X., Zhou, T. et al. (2018). Mesh electronics: a new paradigm for tissue-like brain probes. *Current Opinion in Neurobiology* 50: 33–41.

- 148 Choi, S., Han, S.I., Kim, D. et al. (2019). High-performance stretchable conductive nanocomposites: materials, processes, and device applications. *Chemical Society Reviews* 48 (6): 1566–1595.
- 149 Yuk, H., Lu, B., Lin, S. et al. (2020). 3D printing of conducting polymers. *Nature Communications* 11 (1): 1604.
- 150 Vallem, V., Roosa, E., Ledinh, T. et al. (2021). A soft variable-area electrical-double-layer energy harvester. *Advanced Materials* 33 (43): 2103142.
- 151 Shay, T., Velev, O.D., and Dickey, M.D. (2018). Soft electrodes combining hydrogel and liquid metal. *Soft Matter* 14 (17): 3296–3303.
- 152 Mao, S., Zhang, D., Zhang, Y. et al. (2020). A universal coating strategy for controllable functionalized polymer surfaces. *Advanced Functional Materials* 30 (40): 2004633.
- 153 Wei, K., Chen, X., Zhao, P. et al. (2019). Stretchable and bioadhesive supramolecular hydrogels activated by a one-stone–two-bird postgelation functionalization method. *ACS Applied Materials & Interfaces* 11 (18): 16328–16335.
- 154 Liu, Q., Nian, G., Yang, C. et al. (2018). Bonding dissimilar polymer networks in various manufacturing processes. *Nature Communications* 9 (1): 846.
- 155 Chen, H., Liu, Y., Ren, B. et al. (2017). Super bulk and interfacial toughness of physically crosslinked double-network hydrogels. *Advanced Functional Materials* 27 (44): 1703086.
- 156 Fan, H., Wang, J., Tao, Z. et al. (2019). Adjacent cationic–aromatic sequences yield strong electrostatic adhesion of hydrogels in seawater. *Nature Communications* 10 (1): 5127.
- 157 Ji, H. and De Gennes, P. (1993). Adhesion via connector molecules: the many-stitch problem. *Macromolecules* 26 (3): 520–525.
- 158 Raphael, E. and De Gennes, P. (1992). Rubber-rubber adhesion with connector molecules. *The Journal of Physical Chemistry* 96 (10): 4002–4007.
- 159 Wong, T.H., Liu, Y., Li, J. et al. (2021). Triboelectric nanogenerator tattoos enabled by epidermal electronic technologies. *Advanced Functional Materials* 32: 2111269.
- 160 Kamyshny, A. and Magdassi, S. (2019). Conductive nanomaterials for 2D and 3D printed flexible electronics. *Chemical Society Reviews* 48 (6): 1712–1740.
- 161 Shin, S.R., Farzad, M.R., Tamayol, A. et al. (2016). A bioactive carbon nanotube-based ink for printing 2D and 3D flexible electronics. *Advanced Materials* 28 (17): 3280–3289.
- 162 Cheng, X. and Zhang, Y. (2019). Micro/nanoscale 3D assembly by rolling, folding, curving, and buckling approaches. *Advanced Materials* 31 (36): 1901895.
- 163 Zhao, H., Kim, Y., Wang, H. et al. (2021). Compliant 3D frameworks instrumented with strain sensors for characterization of millimeter-scale engineered muscle tissues. *Proceedings of the National Academy of Sciences* 118 (19): e2100077118.
- 164 Liu, J. (2018). Syringe injectable electronics. In: *Biomimetics Through Nanoelectronics* (ed. J. Liu), 65–93. Springer.
- 165 Dai, X. et al. (2018). Mesh nanoelectronics: seamless integration of electronics with tissues. *Accounts of Chemical Research* 51 (2): 309–318.

- 166 Ronkainen, N.J., Halsall, H.B., and Heineman, W.R. (2010). Electrochemical biosensors. *Chemical Society Reviews* 39 (5): 1747–1763.
- 167 Mahshid, S.S., Flynn, S.E., and Mahshid, S. (2021). The potential application of electrochemical biosensors in the COVID-19 pandemic: a perspective on the rapid diagnostics of SARS-CoV-2. *Biosensors and Bioelectronics* 176: 112905.
- 168 Kesler, V., Murmann, B., and Soh, H.T. (2020). Going beyond the Debye length: overcoming charge screening limitations in next-generation bioelectronic sensors. *ACS Nano* 14 (12): 16194–16201.
- 169 Menon, S., Mathew, M.R., Sam, S. et al. (2020). Recent advances and challenges in electrochemical biosensors for emerging and re-emerging infectious diseases. *Journal of Electroanalytical Chemistry* 878: 114596.
- 170 Piccinini, E., Alberti, S., Longo, G.S. et al. (2018). Pushing the boundaries of interfacial sensitivity in graphene FET sensors: polyelectrolyte multilayers strongly increase the Debye screening length. *The Journal of Physical Chemistry C* 122 (18): 10181–10188.
- 171 Gao, N., Gao, T., Yang, X. et al. (2016). Specific detection of biomolecules in physiological solutions using graphene transistor biosensors. *Proceedings of the National Academy of Sciences* 113 (51): 14633–14638.
- 172 Lieleg, O. and Ribbeck, K. (2011). Biological hydrogels as selective diffusion barriers. *Trends in Cell Biology* 21 (9): 543–551.
- 173 Kim, M., Chen, W.G., Kang, J.W. et al. (2015). Artificially engineered protein hydrogels adapted from the nucleoporin Nsp1 for selective biomolecular transport. *Advanced Materials* 27 (28): 4207–4212.
- 174 Yang, Y.J., Mai, D.J., Li, S. et al. (2021). Tuning selective transport of biomolecules through site-mutated nucleoporin-like protein (NLP) hydrogels. *Biomacromolecules* 22 (2): 289–298.
- 175 Purwidiantri, A., Domingues, T., Borme, J. et al. (2021). Influence of the electrolyte salt concentration on DNA detection with graphene transistors. *Biosensors* 11 (1): 24.
- 176 Kishore, R.A. and Priya, S. (2018). A review on low-grade thermal energy harvesting: materials, methods and devices. *Materials* 11 (8): 1433.
- 177 Fan, F.-R., Tian, Z.-Q., and Wang, Z.L. (2012). Flexible triboelectric generator. *Nano Energy* 1 (2): 328–334.
- 178 Zhu, G., Pan, C., Guo, W. et al. (2012). Triboelectric-generator-driven pulse electrodeposition for micropatterning. *Nano Letters* 12 (9): 4960–4965.
- 179 Kim, S., Choi, S.J., Zhao, K. et al. (2016). Electrochemically driven mechanical energy harvesting. *Nature Communications* 7 (1): 10146.
- 180 Stauss, S. and Honma, I. (2018). Biocompatible batteries—materials and chemistry, fabrication, applications, and future prospects. *Bulletin of the Chemical Society of Japan* 91 (3): 492–505.
- 181 Zheng, Q., Shi, B., Li, Z. et al. (2017). Recent progress on piezoelectric and triboelectric energy harvesters in biomedical systems. *Advanced Science* 4 (7): 1700029.
- 182 Song, Y., Shi, Z., Hu, G.H. et al. (2021). Recent advances in cellulose-based piezoelectric and triboelectric nanogenerators for energy harvesting: a review. *Journal of Materials Chemistry A* 9 (4): 1910–1937.

- 183 Luo, J. and Wang, Z.L. (2020). Recent progress of triboelectric nanogenerators: from fundamental theory to practical applications. *EcoMat* 2 (4): e12059.
- 184 Hinchet, R., Yoon, H.J., Ryu, H. et al. (2019). Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. *Science* 365 (6452): 491–494.
- 185 Lee, K.H., Zhang, Y.Z., Jiang, Q. et al. (2020). Ultrasound-driven two-dimensional $Ti_3C_2T_x$ MXene hydrogel generator. *ACS Nano* 14 (3): 3199–3207.
- 186 He, P., He, J., Huo, Z. et al. (2022). Microfluidics-based fabrication of flexible ionic hydrogel batteries inspired by electric eels. *Energy Storage Materials* 49: 348–359.
- 187 Schroeder, T.B., Guha, A., Lamoureux, A. et al. (2017). An electric-eel-inspired soft power source from stacked hydrogels. *Nature* 552 (7684): 214–218.
- 188 Fu, X., Zhuang, Z., Zhao, Y. et al. (2022). Stretchable and self-powered temperature–pressure dual sensing ionic skins based on thermogalvanic hydrogels. *ACS Applied Materials & Interfaces* 14 (39): 44792–44798.
- 189 Bai, C., Li, X., Cui, X. et al. (2022). Transparent stretchable thermogalvanic PVA/gelation hydrogel electrolyte for harnessing solar energy enabled by a binary solvent strategy. *Nano Energy* 100: 107449.
- 190 Liu, W., Wang, Z., Wang, G. et al. (2019). Integrated charge excitation triboelectric nanogenerator. *Nature Communications* 10 (1): 1426.
- 191 Wang, J., Wu, C., Dai, Y. et al. (2017). Achieving ultrahigh triboelectric charge density for efficient energy harvesting. *Nature Communications* 8 (1): 88.
- 192 Niu, S. and Wang, Z.L. (2015). Theoretical systems of triboelectric nanogenerators. *Nano Energy* 14: 161–192.
- 193 Wang, Y., Guo, T., Tian, Z. et al. (2022). MXenes for energy harvesting. *Advanced Materials* 34 (21): 2108560.
- 194 Yang, G., Lei, W., Chen, C. et al. (2020). Ultrathin $Ti_3C_2T_x$ (MXene) membrane for pressure-driven electrokinetic power generation. *Nano Energy* 75: 104954.
- 195 Cang, Y., Liu, J., Ryu, M. et al. (2022). On the origin of elasticity and heat conduction anisotropy of liquid crystal elastomers at gigahertz frequencies. *Nature Communications* 13 (1): 5248.
- 196 Wu, H., Yu, G., Pan, L. et al. (2013). Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. *Nature Communications* 4 (1): 1943.
- 197 Kim, T., Song, W., Son, D.Y. et al. (2019). Lithium-ion batteries: outlook on present, future, and hybridized technologies. *Journal of Materials Chemistry A* 7 (7): 2942–2964.
- 198 Wang, Z., Li, H., Tang, Z. et al. (2018). Hydrogel electrolytes for flexible aqueous energy storage devices. *Advanced Functional Materials* 28 (48): 1804560.
- 199 Chan, C.Y., Wang, Z., Jia, H. et al. (2021). Recent advances of hydrogel electrolytes in flexible energy storage devices. *Journal of Materials Chemistry A* 9 (4): 2043–2069.
- 200 Chen, Z., To, J.W.F., Wang, C. et al. (2014). A three-dimensionally interconnected carbon nanotube–conducting polymer hydrogel network for

- high-performance flexible battery electrodes. *Advanced Energy Materials* 4 (12): 1400207.
- 201 Tian, Y. and Zhao, C.-Y. (2013). A review of solar collectors and thermal energy storage in solar thermal applications. *Applied Energy* 104: 538–553.
- 202 Pu, S., Liao, Y., Chen, K. et al. (2020). Thermogalvanic hydrogel for synchronous evaporative cooling and low-grade heat energy harvesting. *Nano Letters* 20 (5): 3791–3797.
- 203 Ding, T., Zhou, Y., Wang, X.Q. et al. (2021). All-soft and stretchable thermogalvanic gel fabric for antideformity body heat harvesting wearable. *Advanced Energy Materials* 11 (44): 2102219.
- 204 Lee, S.W., Yang, Y., Lee, H.W. et al. (2014). An electrochemical system for efficiently harvesting low-grade heat energy. *Nature Communications* 5 (1): 3942.
- 205 Han, C.-G., Qian, X., Li, Q. et al. (2020). Giant thermopower of ionic gelatin near room temperature. *Science* 368 (6495): 1091–1098.
- 206 Song, E., Li, J., Won, S.M. et al. (2020). Materials for flexible bioelectronic systems as chronic neural interfaces. *Nature Materials* 19 (6): 590–603.
- 207 Zhang, M., Tang, Z., Liu, X. et al. (2020). Electronic neural interfaces. *Nature Electronics* 3 (4): 191–200.
- 208 Shi, J. and Fang, Y. (2019). Flexible and implantable microelectrodes for chronically stable neural interfaces. *Advanced Materials* 31 (45): 1804895.
- 209 Park, Y., Franz, C.K., Ryu, H. et al. (2021). Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids. *Science Advances* 7 (12): eabf9153.
- 210 Son, D., Gilbert, H., and Sitti, M. (2020). Magnetically actuated soft capsule endoscope for fine-needle biopsy. *Soft Robotics* 7 (1): 10–21.
- 211 Erin, O., Alici, C., and Sitti, M. (2021). Design, actuation, and control of an MRI-powered untethered robot for wireless capsule endoscopy. *IEEE Robotics and Automation Letters* 6 (3): 6000–6007.
- 212 Mohan, S., Thirumalai, C., and Srivastava, G. (2019). Effective heart disease prediction using hybrid machine learning techniques. *IEEE Access* 7: 81542–81554.
- 213 Uddin, S., Khan, A., Hossain, M.E. et al. (2019). Comparing different supervised machine learning algorithms for disease prediction. *BMC Medical Informatics and Decision Making* 19 (1): 1–16.