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elasticity of hydrogels plays an important role in controlling transport. Future
opportunities may focus on the synergistic role of network elasticity and reversible
interaction in independently controlling the transport of various biomolecules
in hydrogels. Such fundamental knowledge may also aid in understanding the
selective transport mechanisms employed in biological systems, such as sperm
selection by mucus layers.

1.4.2 Electrochemical Design of Hydrogel-2D Material Interfaces

The other challenge faced by in-situ electrochemical biosensors is their inability
to detect biological events in high ionic strength solutions, ubiquitous in body
fluids [166, 175]. The presence of 0.9 wt% mobile ions (Na+, K+, Cl−) in body fluids
leads to significant screening of electrical fields, which greatly reduces the sensi-
tivity of electrochemical detection. For instance, the Debye length for 2D sensing
materials in body fluids is typically below 1 nm, making it almost impossible to
detect proteins (typically around 10 nm) above the Debye length [168]. A potential
solution is to engineer the interface between the hydrogel and 2D material to
enhance the field-effect sensing performance. Recent studies have shown that
surface-functionalized 2D materials can achieve a 10-fold increase in Debye length
from 0.82 to 9.6 nm in high ionic strength solutions [170]. One possibility is to
graft crosslinked polymer networks of hydrogels onto existing sensing materials
and explore the potential of optimizing the network topology and charge density
in hydrogels to push the limits of electrochemical properties such as Debye length,
surface capacitance, and band gap.

1.5 Flexible Hydrogel Biobattery

A flexible biobattery is a device that converts low-grade energy within the human
body into usable energy and is essential for developing self-powered in-situ bioelec-
tronic devices [176–179]. Hydrogels are a promising material for use in these devices
because they are porous and can modulate ion and electron transport while minimiz-
ing potential leakage compared to traditional organic aqueous electrolytes. Further-
more, hydrogels are biocompatible and soft, which reduces damage to surrounding
tissues. However, the power outputs of flexible hydrogel biobatteries are still rel-
atively low and do not meet the power requirements of most in-situ bioelectronic
devices. Figure 1.10a shows the power range and operation time requirements of
common biomedical devices [180]. To develop the next generation of self-sustaining
in-situ bioelectronic devices, high-performing hydrogels must be leveraged to har-
ness various forms of energy within the human body (Figure 1.10b). This potential
remains largely unexplored but is highly desirable. This section will discuss recent
efforts in exploring the potential of powering in-situ bioelectronic devices through
mechanical, chemical, and thermal energy harvesters (Figure 1.10c).
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Figure 1.10 Flexible hydrogel batteries to self-power in-situ bioelectronic devices.
(a) Examples of common implantable medical devices, with their required power supply and
operation time (Source: Ref. [180]/Oxford University Press). (b) Schematic illustrations of
the energy harvester working inside the intestine and (c) three forms of energy harvesting,
including mechanical, chemical, and thermal energy, generated within the human body.

1.5.1 Mechanical Energy Harvester

Mechanical energy harvesters are devices that can convert the mechanical energy of
the human body or organs into electrical energy for powering in-situ bioelectronic
devices. One prime example of a mechanical energy harvester is the triboelectric
nanogenerators (TENGs) [181–183], which generates an electrostatic potential
difference between two materials of diverse polarities due to the triboelectric
effect, causing a transfer of charges and the formation of an electric potential
difference between them (Figure 1.11a) [177, 190–192]. Figure 1.11b presents
a representative example of using ultrasound to induce vibrations and harness
triboelectricity for in-body powering [184, 185]. Another way to harvest mechan-
ical energy in the body is by leveraging the fluid-electro-mechanical coupling
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Figure 1.11 Schematic illustration of the working mechanism of (a) mechanical energy
harvester with (b) examples (Source: Ref. [184] and Ref. [185]), (c) chemical energy harvester
with (d) examples (Source: Ref. [186] and Ref. [187]), and (e) thermal energy harvester with
(f) examples (Source: Ref. [188] and Ref. [189]. © 2022/Elsevier).

of electrokinetic streams in porous materials to generate electricity [193, 194].
Electrokinetic mechanical energy harvesters typically involve applying external
forces, such as pressure, to drive the movement of micro-/nanofluidic water across
a porous membrane, thereby causing the motion of ions to produce electricity.
Unlike conventional TENGs, electrokinetic mechanical energy harvester can
harvest low-frequency body motions while potentially producing high power
output [195].

1.5.2 Chemical Energy Harvesters

Chemical energy harvesters are devices that convert chemical energy into electrical
energy through chemical reactions in an electrolyte (Figure 1.11c) [196, 197].
These devices usually have two electrodes and an electrolyte, where the electrolyte
acts as a mediator for the chemical reactions. The chemical reactions that occur
between the positive and negative electrodes cause the flow of electrons within
the electrolyte, thus generating electrical energy that can be used in the circuit.
Hydrogel, with its watery nature, is an excellent carrier for chemicals, and acts
as the electrolyte [198–200]. Drawing inspiration from the electric eel’s power
generation mechanism, Yang and Mayer and coworkers harnessed the gradients of
ions in hydrogels to develop soft, flexible, transparent, and biocompatible hydrogel
biobatteries, generating 110 V at open circuit or 27 mW/m2 per hydrogel cell, which
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is a significant achievement in the realm of electrochemical energy harvesting via
hydrogels (Figure 1.11d) [186, 187]. Despite the abundant chemical reactions that
occur within the human body (such as those that occur during digestion resulting
in pH differences), there has been no significant progress in in-situ chemical
energy harvesting. The main barriers are related to unstable ion concentrations and
uncontrolled ion types in body fluids. The stability and size of the device are still
the main challenges.

1.5.3 Thermal Energy Harvesters

Thermal energy harvesters using thermoelectric materials (Figure 1.11e), such as
thermoelectric hydrogels, offer the potential to harvest low-grade body heat and
power in-situ bioelectronic devices. These soft and biocompatible thermoelectric
hydrogels are regarded as favorable alternatives to conventional thermoelec-
tric materials [201–205]. Recent studies by Chen and Liu and coworkers have
demonstrated a giant positive thermopower of 17 mV/K in an ionic thermoelec-
tric hydrogel by harnessing synergistic thermo-diffusion and thermo-galvanic
effects. The thermos-diffusion effect is dominated by the presence of ions (KCl,
NaCl, and KNO3), while the thermo-galvanic effect is governed by a redox cou-
ple (Fe(CN)6

4−)/(Fe(CN)6
3−), also adopted in other thermoelectric hydrogels

(Figure 1.11f) [188, 189]. While thermoelectric hydrogels have significant potential
for in-situ bioelectronics, the low power output and poor mechanical properties
of these materials remain key limitations. Overcoming these limitations through
further research and development will be crucial to fully exploit the unique
advantages of thermoelectric hydrogels in in-situ bioelectronics.

1.6 Concluding Remarks

Over the past few years, we have seen many exciting advances and examples
in the field of in-situ hydrogel bioelectronics that suggest great potential of
high-performing hydrogels for many important applications. We will conclude
this chapter with a set of opportunities by integrating interdisciplinary efforts
in various areas of in-situ hydrogel bioelectronics, including ingestible sensors,
neural interfaces, miniature robots, and data analytics. Ingestible sensors are one
area where hydrogel-based bioelectronics can be leveraged (Figure 1.12a). These
sensors can be designed to be swallowed and pass through the gastrointestinal
tract, allowing for noninvasive monitoring of various biomarkers in real time.
With the integration of hydrogel-based sensors, these devices can provide more
accurate and reliable data, as hydrogels can respond to changes in pH, temperature,
and other environmental factors [32]. Neural interface technology is another area
where hydrogel-based bioelectronics can be applied (Figure 1.12b) [206–209]. By
using hydrogels as a platform for neural interfaces, these devices can be made
more biocompatible and less invasive, reducing the risk of rejection or other
complications. With the integration of hydrogel-based sensors and actuators, these
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Figure 1.12 Future opportunities of in-situ hydrogel bioelectronics. Schematic
illustrations of (a) ingestible sensors, (b) neural interfaces, (c) miniature robots, and
(d) predictive analytics.

interfaces can provide more accurate and precise control over prosthetic devices
or assistive technologies, allowing for more natural movements and interactions
with the environment. Miniature robots are also an exciting area of research for
in-situ hydrogel bioelectronics (Figure 1.12c) [210, 211]. With the use of hydrogels,
these robots can be made more flexible and compliant, allowing for safer and more
effective integration with the body. By incorporating hydrogel-based sensors and
actuators, these robots can be controlled and manipulated to perform targeted drug
delivery, tissue engineering, and surgical procedures. Finally, the integration of
data analytics and machine learning algorithms is crucial for unlocking the full
potential of in-situ hydrogel bioelectronics (Figure 1.12d) [212, 213]. With the vast
amounts of data generated by these devices, there is a need for advanced analytics
tools to help interpret and make sense of the data. By leveraging these tools, we can
gain new insights into biological systems and develop more effective treatments
and therapies.
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