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1 Einleitung

Schwingungen können wir beobachten, wie z. B. den Wellengang des Meeres, das
Flattern einer Fahne im Wind oder die Bewegung eines Kindes auf einer Schaukel.
Wir können Schwingungen hören und sind sogar in der Lage, anhand typischer
Charakteristika zu erkennen, von welchem Sänger ein Lied gesungen oder von
welchem Instrument eine bestimmte Passage eines Musikstücks gespielt wird. In
der Technik sind Schwingungen von großer Bedeutung, wie man sich unschwer
vorstellen kann, wenn man in einem startenden Flugzeug sitzt, das gerade mit
maximalem Schub beschleunigt, oder wenn man in einem Kraftfahrzeug über eine
unebene Straße fährt. Hier wirken sich die Schwingungen nicht nur auf das technische
System aus, etwa indem sie die auftretenden Kräfte und Verformungen bestimmen,
sondern auch auf den Menschen, der Schwingungen in bestimmten Situationen
als unangenehm wahrnimmt. Die Beschäftigung mit Schwingungen und die Suche
nach Möglichkeiten zu ihrer Vermeidung, oder zumindest ihrer Minderung, zählt
deshalb zu den klassischen Aufgaben des Ingenieurs. Entsprechende Vorlesungen zur
„Schwingungslehre“ werden an Fachhochschulen und Universitäten in der Regel im
Rahmen der Lehrveranstaltungen zur Technischen Mechanik und Maschinendynamik
angeboten.

Man kann Schwingungen nach unterschiedlichen Kriterien kennzeichnen und zum Bei-
spiel in mechanische Schwingungen, elektromagnetische Schwingungen usw. gliedern.
Meist zieht man jedoch den zeitlichen Verlauf heran und spricht von harmonischen,
periodischen und quasiperiodischen Schwingungen, wenn es sich um deterministische
Vorgänge handelt, oder von stationären und instationären Zufallsschwingungen,
wenn die Vorgänge scheinbar regellos sind. Bei solchen Zufallsschwingungen ist es
in bestimmten Fällen möglich, statistische Größen, wie Mittelwert, Standardabwei-
chungen, usw. zur Beschreibung zu verwenden. Wir werden darauf aber nicht weiter
eingehen. Eine weitere Möglichkeit zur Charakterisierung von Schwingungen besteht
darin, ihre Ursache zu nennen: freie Schwingungen, erzwungene Schwingungen, selbs-
terregte Schwingungen und parametererregte Schwingungen, s. Abb. 1.1. Und nicht
zuletzt gibt es die Möglichkeit, Schwingungen danach zu charakterisieren, wie viele
Freiheitsgrade das System besitzt, in dem sie auftreten. Dieser Gliederung werden
wir folgen und nach und nach Schwingungen in Systemen mit einem Freiheitsgrad,
Schwingungen in Systemen mit mehreren Freiheitsgraden und schließlich in Sys-
temen mit unendlich vielen Freiheitsgraden, nämlich in mechanischen Kontinua
wie der Saite, dem Stab und dem Balken, betrachten. Eine erste Einführung in die
Schwingungslehre hatten wir bereits in TM 3 gegeben. Dort wurden allerdings nur
Systeme mit maximal zwei Freiheitsgeraden behandelt, während hier in TM 4 auch
Systeme mit sehr vielen Freiheitsgraden betrachtet werden. Dabei konzentrieren
wir uns auf Schwingungen in linearen Systemen, bei denen eine Superposition von
Lösungsanteilen zulässig ist.



2 1 Einleitung

Bei der Behandlung von ingenieurwissenschaftlichen Fragestellung verwenden wir
Ersatzsysteme, die wir erhalten, indem nur die für die jeweils betrachtete Frage-
stellung wesentlichen Punkte berücksichtigt werden und vereinfachende Annahmen
getroffen werden. In der Schwingungslehre bestehen diese Ersatzmodelle meist aus
Federn, Dämpfern, Massepunkten und starren Körpern, in denen man sich die Nach-
giebigkeit des Systems, seine Energiedissipation sowie die Trägheitseigenschaften
in diskreten Elementen konzentriert vorstellt. Natürlich ist dies in jedem Fall nur
eine Näherung. Andererseits bietet dieses Vorgehen den Vorteil, dass die Ergebnisse,
die wir für eine bestimmte Klasse von Ersatzmodellen erzielen, für eine große Zahl
praktischer Anwendungen relevant sind, unabhängig davon, wie die konstruktiven
Details jeweils sind, solange nur die Modellbildung auf das gleiche Ersatzmodell
führt. Die Bildung von Ersatzmodellen erfordert in der Regel viel Erfahrung. Wir
werden deshalb stets von bereits gegebenen Ersatzmodellen ausgehen und deren
Verhalten untersuchen.

a) Freie Schwingungen

q
k d

m
q

g

m

l = const.

b) Erzwungene Schwingungen

q
k d

m

f (t)

q
k d

m

f

y (t)

c) Selbsterregte Schwingungen

k, d

m

N

v µ0, µ

q1

q2

k1

k2

d) Parametererregte Schwingungen
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1.1: Ersatzmodell für freie, erzwungene, selbsterregte und parametererregte
Schwingungen

Die zur Untersuchung von Schwingungen verwendeten Ersatzmodelle werden durch
Systemparameter (Längenabmessungen, Massen, Trägheitsmomente, Federsteifig-
keiten, usw.) festgelegt und ihr jeweiliger Zustand wird durch Zustandsgrößen
(Verschiebungen, Geschwindigkeiten, usw.) beschrieben. Das Verhalten der Systeme
wird durch Bewegungsgleichungen mathematisch beschrieben und hängt stark davon
ab, in welcher Form das System mit seiner Umgebung in Wechselwirkung steht.
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Neben freien Schwingungen, bei denen das System mit vorgegebenen Anfangsbedin-
gungen startet und sich selbst überlassen wird, werden verschiedene Formen der
Schwingungsanregung betrachtet, bei denen z. B. der Verlauf einer äußeren Kraft,
die auf das System einwirkt (Kraftanregung), oder die Verschiebung eines Punktes
des Systems (Weganregung), oder die Drehzahl einer mit Unwucht umlaufenden
Welle (Unwuchtanregung) gegeben ist.

Von grundlegender Bedeutung für die Schwingungslehre ist der Begriff des Frei-
heitsgrades, den wir bereits in TM 3 kennengelernt haben. Die minimale Anzahl
an unabhängigen skalaren Größen (verallgemeinerte Koordinaten), mit denen man
die Lage eines mechanischen Systems eindeutig beschreiben kann, ist die Anzahl
der Freiheitsgrade des Systems. Je nach der zu untersuchenden Fragestellung und
den konstruktiven Randbedingungen der betrachteten Systeme kann die Anzahl der
Freiheitsgrade von einem, bzw. wenigen Freiheitsgraden bis zu mehreren Tausend
oder mehreren Millionen Freiheitsgraden gehen. Abb. 1.2 zeigt Beispiele typischer
Ersatzmodelle. Die in Abb. 1.2a) und Abb. 1.2b) dargestellten Ersatzmodelle werden
in der Fahrzeugdynamik verwendet, wobei das sogenannte Viertelfahrzeugmodell
zur isolierten Betrachtung von Hub- Nick- oder Wankschwingungen benutzt werden
kann, während das Gesamtfahrzeugmodell die gleichzeitige Betrachtung dieser Be-
wegungen erlaubt. Das angedeutete Finite-Elemente-Ersatzmodell stellt eine sehr
detaillierte Beschreibung eines Schaufelkranzes mit etwa 500.000 Freiheitsgraden
dar, während das Mehrmassen-Ersatzmodell nur bestimmte Schwingungsformen des
Schaufelkranzes abbildet. Je weniger Freiheitsgrade ein System hat, desto einfacher
ist es in der Regel zu untersuchen. Man ist deshalb meist daran interessiert, die
Anzahl der Freiheitsgrade so klein wie möglich zu halten. Im Extremfall gelangt
man so zu einem System mit nur einem Freiheitsgrad, bei dem nur eine einzige
verallgemeinerte Koordinate zur Beschreibung verwendet wird.

Nicht immer sind die Schwingungen, mit denen wir uns beschäftigen, regelmäßig.
Häufig haben wir es mit mehr oder weniger regellosen Zeitverläufen zu tun, etwa
wenn es sich um winderregte Schwingungen eines Bauwerkes handelt, oder wenn
wir die Kräfte und Verschiebungen in einem Fahrzeug betrachten, das über eine
unebene Fahrbahn, z. B. eine Schotterpiste, fährt.

Im nachfolgenden Kapitel 2 werden wir die grundlegenden Methoden und Werk-
zeuge zur Beschreibung von Schwingungen kennenlernen und anschließend Systeme
mit einem Freiheitsgrad untersuchen. Der Übergang zu Systemen mit mehreren
Freiheitsgraden erfolgt in Kapitel 4, wo Systeme mit zwei Freiheitsgraden betrachtet
werden, bevor in Kapitel 5 der allgemeine Fall von Systemen mit einer beliebig
großen, aber endlichen Anzahl von Freiheitsgraden behandelt wird. Die Schwingun-
gen mechanischer Kontinua werden in Kapitel 6 betrachtet, wobei wir uns sowohl
mit der Wellenausbreitung als auch mit Eigenschwingungen bei verschiedenen Rand-
bedingungen beschäftigen werden.
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1.2: Typische Ersatzmodelle:
a) Viertelfahrzeugmodell
b) Gesamtfahrzeugmodell
c) Finite Elemente Ersatzmodell für Schaufelkranz
d) Mehrmassen-Ersatzmodell für Schaufelkranz



2 Beschreibung von Schwingungen

2.1 Harmonische Schwingungen

2.1.1 Die Parameter harmonischer Schwingungen

Eine Zeitfunktion x (t) nennen wir harmonisch, wenn sie sich in der Form

x (t) = C0 + C cos (ωt) + S sin (ωt) (2.1)

darstellen lässt. Die harmonische Schwingung ist periodisch, d. h., es gilt

x (t+ T ) = x (t) , (2.2)

mit der Schwingungsdauer

T =
2π

ω
(2.3)

und der Frequenz

f =
1

T
=

ω

2π
. (2.4)

Der positive Parameter ω wird Kreisfrequenz genannt, und die Konstanten C0, C
und S bezeichnen wir als Fourier-Koeffizienten1.

Die harmonische Schwingung (2.1) kann ebenso gut in der Form

x (t) = x+ x̂ cos (ωt+ α) (2.5)

geschrieben werden, in der anstelle der drei Fourier-Koeffizienten die drei Pa-
rameter Mittelwert x, Amplitude x̂ und Nullphasenwinkel α auftreten. Der Null-
phasenwinkel α liegt im Intervall (−π, π] und gibt an, um welche Nullphasenzeit
α
2π
T das Maximum der Schwingung gegenüber dem Zeitnullpunkt verschoben ist.

Ein positiver Nullphasenwinkel bedeutet, dass das Maximum der Cosinus-Funktion
in (2.5) zu einer negativen Zeit verschoben ist. Der Zusammenhang zwischen den
Fourier-Koeffizienten und den Größen x, x̂ und α ist durch

x = C0, x̂ =
√

C2 + S2,

sin (α) =
−S√
C2 + S2

, cos (α) =
C√

C2 + S2
,

(2.6)

1 Nach Jean Baptiste Joseph Fourier, französischer Mathematiker, *1768 in Auxerre, †1830 in
Paris.
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bzw.

C0 = x, C = x̂ cos (α) , S = −x̂ sin (α) (2.7)

gegeben, wobei die dritte und vierte Gleichung von (2.6) auf unendlich viele Lösungen
von α führt, die sich jeweils um Vielfache von 2π unterscheiden. Durch Bilden des
Hauptwertes wählen wir diejenige Lösung für α aus, die im Intervall (−π, π] liegt.

Wir hätten die harmonische Schwingung (2.1) auch als

x (t) = x+ x̂ sin (ωt+ β) (2.8)

schreiben können, mit denselben Werten von x, x̂ und ω, jedoch einem anderen
Winkel β = α + π

2 . Im Folgenden verwenden wir stets die Darstellung (2.1) oder
(2.5) als „Standard-Form“ einer harmonischen Schwingung.

Die Zeitableitung einer harmonischen Funktion ist ebenfalls harmonisch. Das heißt,
wenn z. B. x (t) gemäß (2.5) eine Auslenkung beschreibt, dann sind die Geschwin-
digkeit

ẋ (t) = −x̂ω sin (ωt+ α) = x̂ω cos
(

ωt+ α+
π

2

)

(2.9)

und die Beschleunigung

ẍ (t) = −x̂ω2 cos (ωt+ α) = x̂ω2 cos (ωt+ α+ π) (2.10)

ebenfalls harmonische Schwingungen, deren Amplituden sich von der Amplitude
der Auslenkung genau um den Faktor ω, bzw. ω2 unterscheiden. Die Schwingungen
nehmen ihre jeweiligen Maxima zu unterschiedlichen Zeitpunkten an, und die
Phasenverschiebung zwischen Auslenkung und Geschwindigkeit sowie zwischen
Geschwindigkeit und Beschleunigung beträgt jeweils π

2 , bzw. 90◦. Dabei bedeutet
die positive Phasenverschiebung von π

2 zwischen Auslenkung und Geschwindigkeit,
dass die Geschwindigkeit der Auslenkung um ein Viertel der Schwingungsdauer,
d. h. um T

4 , zeitlich vorauseilt. Gleiches gilt für die Beschleunigung gegenüber der
Geschwindigkeit. Bei einer harmonischen Schwingung sind also Beschleunigung und
Auslenkung genau in Gegenphase.

x, ẋ

t

T
4 αT

2π

2.1: Auslenkung (—) und Geschwindigkeit (—) gemäß (2.5) und (2.9) mit
x = 0
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2.1.2 Komplexe Schreibweise harmonischer Schwingungen

Eine komplexe Zahl x können wir durch einen Punkt in der Gauss’schen2 Zahlen-
ebene darstellen3. Mit der Schreibweise

x = xr + j xi, xr = Re [x] , xi = Im [x] , (2.11)

unter Verwendung von Real- und Imaginärteil, und mit der Schreibweise

x = xejγ , x = |x| , γ = arg [x] , (2.12)

unter Verwendung von Betrag und Argument, stehen uns zwei verschiedene Darstel-
lungsformen für komplexe Zahlen zur Verfügung. Der Zusammenhang zwischen den
Größen ist dabei

xr = x cos (γ) , xi = x sin (γ) (2.13)

und

x =
√

x2
r + x2

i , sin (γ) =
xi

√

x2
r + x2

i

, cos (γ) =
xr

√

x2
r + x2

i

, (2.14)

vgl. Abb. 2.2. Der in der Darstellung angegebene Betrag |x| gibt die Länge des
komplexen Zeigers x in der Gauss’schen Zahlenebene an.

Im [x]

Im

arg [x]

|x|

Re [x]

x

Re

2.2: Darstellung der komplexen Zahl x in der Gauss’schen Zahlenebene

Es ist nun leicht einsichtig, dass man die harmonische Schwingung (2.5) auch als

x (t) = Re [x (t)] = Re
[

x+ x̂ej(ωt+α)
]

= Re
[

x+ x̂ejαejωt
]

= x+ Re
[

x̂ejωt
]

,
(2.15)

mit

x = Re [x] , x̂ = x̂ejα, (2.16)

2 Nach Johann Friedrich Gauss, deutscher Mathematiker, *1777 Braunschweig, †1855 Göttingen
3 Wir kennzeichnen komplexe Zahlen durch Unterstreichen des Formelzeichens, verwenden den

Buchstaben j =
√

−1 für die imaginäre Einheit und bezeichnen mit x∗ die zu x konjugiert
komplexe Größe.
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schreiben kann. Dementsprechend ist

x (t) = x+ x̂ejωt (2.17)

eine komplexe harmonische Funktion, die sich, wie in Abb. 2.3 gezeigt, als Zeigerdia-
gramm darstellen lässt. Der Punkt x (t) durchläuft im Verlauf der Zeit einen Kreis
mit Mittelpunkt x und Radius |x̂|. Der Zeiger rotiert mathematisch positiv, d. h.
entgegen dem Uhrzeigersinn mit der Winkelgeschwindigkeit ω, und startet bei t = 0
in der durch den Nullphasenwinkel α gegebenen Lage.

t

Im

x

x

|x̂|
ωt

|x̂|

t = t∗ > 0

α

t = 0

Re

α
2π
T

x (t)
t = t∗

2.3: Zeigerdiagramm der komplexen harmonischen Funktion (2.17) und
zugehöriger Realteil

Da für komplexe Zahlen x der Zusammenhang

Re [x] =
1

2
(x+ x∗) (2.18)

gilt, kann man die reelle harmonische Schwingung (2.5) auch als

x (t) =
1

2

[

x+ x∗ + x̂ejωt + x̂∗e−jωt
]

(2.19)

schreiben, so dass man auf das Zeigerdiagramm der Abb. 2.4 geführt wird. In dieser
Abbildung kennzeichnet 1

2 |x̂| die Länge der komplexen Zeiger 1
2 x̂, bzw. 1

2 x̂
∗.
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Im

x (t)

t = t∗ > 0

1
2 |x̂|

1
2 |x̂|

x

ωt

ωt

α

α

t = 0

Re

2.4: Zeigerdiagramm der komplexen harmonischen Funktion (2.19)

Besonders anschaulich lässt sich der Zusammenhang zwischen der komplexen har-
monischen Funktion und ihren Zeitableitungen im Zeigerdiagramm darstellen. Die
komplexe harmonische Funktion

x (t) = x̂ejωt
(2.20)

hat die Zeitableitungen

ẋ = jωx̂ejωt = ωx̂ej(ωt+ π

2 ), (2.21)

ẍ = (jω)
2
x̂ejωt = −ω2x̂ejωt = ω2x̂ej(ωt+π), (2.22)

und man erkennt, dass die komplexe Amplitude der Geschwindigkeit aus der komple-
xen Amplitude der Auslenkung durch Multiplikation mit jω hervorgeht, was zu einer
Phasenverschiebung von π

2 = 90◦ führt. Ein entsprechender Zusammenhang besteht
auch zwischen den komplexen Amplituden von Geschwindigkeit und Beschleunigung.
Abb. 2.5 zeigt die komplexen Amplituden von Auslenkung, Geschwindigkeit und
Beschleunigung in der Gauss’schen Zahlenebene.

|x̂|ω

|x̂|ω2

Im

|x̂|

Re

2.5: Die komplexen Amplituden von Auslenkung, Geschwindigkeit und
Beschleunigung stehen senkrecht aufeinander
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2.1.3 Überlagerung harmonischer Schwingungen gleicher
Kreisfrequenz

Wir betrachten zwei harmonische Schwingungen gleicher Kreisfrequenz ω:

x1 (t) = x1 + x̂1 cos (ωt+ α1) , (2.23a)

x2 (t) = x2 + x̂2 cos (ωt+ α2) . (2.23b)

Stimmen die beiden Nullphasenwinkel überein, so nennen wir die Schwingungen in
Phase. Nimmt die Differenz α2 −α1 den Wert π an, so sind die beiden Schwingungen
in Gegenphase. Im allgemeinen Fall definieren wir den Phasenverschiebungswinkel

Ψ = Hw (α2 − α1) (2.24)

als Hauptwert der Differenz der beiden Nullphasenwinkel. Abb. 2.6 zeigt die drei
Fälle und das jeweilige Zeigerdiagramm. In diesem Zeigerdiagramm sind x̂1 und x̂2

die Bezeichnungen der jeweiligen komplexen Zeiger, während zuvor in den Abb. 2.2
bis Abb. 2.5 jeweils die Längen der Zeiger angegeben waren.

a)

x1, x2

t

x1

x2

Im

Re

x̂1

x̂2

b)

x1, x2

t

x1

x2

Im

Re

x̂1

x̂2

c)

x1, x2

t

x1

x2

α2 − α1

Im

Re

x̂1x̂2

ψ

2.6: Harmonische Schwingungen gleicher Frequenz: a) in Phase α1 = α2,
b) in Gegenphase α2 − α1 = π, c) allgemeiner Fall Ψ = Hw (α2 − α1)
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Als Nächstes betrachten wir die Überlagerung

x (t) = x1 (t) + x2 (t)

= x1 + x̂1 cos (ωt+ α1) + x2 + x̂2 cos (ωt+ α2)
(2.25)

der beiden harmonischen Schwingungen. Mithilfe trigonometrischer Umformungen
erhalten wir

x (t) = x1 + x2 + [x̂1 cos (α1) + x̂2 cos (α2)] cos (ωt)

− [x̂1 sin (α1) + x̂2 sin (α2)] sin (ωt) ;
(2.26)

dies ist eine harmonische Schwingung mit Mittelwert x1 + x2 und den in ecki-
gen Klammern stehenden Fourier-Koeffizienten, vgl. (2.1). Sie lässt sich in die
Standardform (2.5) als

x (t) = x+ x̂ cos (ωt+ α) (2.27)

mit

x = x1 + x2,

x̂ =
√

x̂2
1 + 2x̂1x̂2 cos (α1 − α2) + x̂2

2,

tan (α) =
x̂1 sin (α1) + x̂2 sin (α2)

x̂1 cos (α1) + x̂2 cos (α2)

(2.28)

überführen.4

Unter Verwendung der komplexen Erweiterung (2.15) gestaltet sich die Rechnung
deutlich einfacher. Mit

x1 (t) = x1 + x̂1e
jωt, x̂1 = x̂1e

jα1 , (2.29a)

x2 (t) = x2 + x̂2e
jωt, x̂2 = x̂2e

jα2 (2.29b)

ergibt sich

x (t) = x1 (t) + x2 (t) = x1 + x2 + (x̂1 + x̂2)ejωt. (2.30)

Dies ist genau die komplexe Erweiterung von (2.27), wie man leicht nachrechnen
und noch einfacher im Zeigerdiagramm der Abb. 2.7 ablesen kann.

4 Hier ergibt sich, wie schon vorhin bei (2.7) ein eindeutiger Winkel erst durch Bilden des
Hauptwertes
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Im

x1 + x2

x̂2

α2
α

α1

x̂1

x̂

t = 0

Re

2.7: Zeigerdiagramm zur Überlagerung zweier harmonischer Schwingungen
gleicher Kreisfrequenz

2.1.4 Überlagerung harmonischer Schwingungen
unterschiedlicher Kreisfrequenz

Unter Zuhilfenahme des Zeigerdiagramms erkennt man sofort, dass die Überlagerung
zweier harmonischer Schwingungen unterschiedlicher Kreisfrequenz keine harmoni-
sche Schwingung ist, da die Zeiger ja unterschiedlich schnell umlaufen. Wenn die
durch die jeweiligen Kreisfrequenzen festgelegten Umlaufzeiten so sind, dass nach
einer bestimmten Zeit T beide Zeiger eine ganzzahlige Anzahl an Umdrehungen
zurückgelegt haben, ergibt sich die Überlagerung als periodische Schwingung, weil
sich dann nach der Zeit T die Bewegung in genau gleicher Weise wiederholt. Beide
Zeiger sind nun wieder in ihrer ursprünglichen Startposition. Die mathematische
Bedingung dafür ist

ω1T = m · 2π, ω2T = n · 2π, m, n ∈ N. (2.31)

Immer dann, wenn das Verhältnis der beiden Kreisfrequenzen eine rationale Zahl
ist, d. h. wenn

ω1

ω2
=
m

n
∈ Q (2.32)

gilt, ergibt sich eine periodische Schwingung. Man nennt die Schwingungen dann
kommensurabel. Falls die Kreisfrequenzen der überlagerten Schwingungen nicht
im Verhältnis zweier ganzer Zahlen stehen, nennt man die Kreisfrequenzen in-
kommensurabel und die Überlagerung der beiden harmonischen Schwingungen ist
nicht-periodisch.

Von besonderem Interesse ist die Überlagerung, wenn die Kreisfrequenzen der
beiden harmonischen Schwingungen dicht benachbart sind. Wir betrachten dies
für den Sonderfall verschwindender Mittelwerte (x1 = x2 = 0), verschwindender
Nullphasenwinkel (α1 = α2 = 0) und gleicher Amplitude (x̂1 = x̂2 = x̂). Aus

x (t) = x̂ cos (ω1t) + x̂ cos (ω2t) (2.33)

erhalten wir nach kurzer Zwischenrechnung

x (t) = 2x̂ cos

(

ω1 + ω2

2
t

)

cos

(

ω1 − ω2

2
t

)

, (2.34)


