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1  Einleitung

Schwingungen kénnen wir beobachten, wie z. B. den Wellengang des Meeres, das
Flattern einer Fahne im Wind oder die Bewegung eines Kindes auf einer Schaukel.
Wir kénnen Schwingungen héren und sind sogar in der Lage, anhand typischer
Charakteristika zu erkennen, von welchem Sénger ein Lied gesungen oder von
welchem Instrument eine bestimmte Passage eines Musikstiicks gespielt wird. In
der Technik sind Schwingungen von grofler Bedeutung, wie man sich unschwer
vorstellen kann, wenn man in einem startenden Flugzeug sitzt, das gerade mit
maximalem Schub beschleunigt, oder wenn man in einem Kraftfahrzeug iiber eine
unebene Strafle fahrt. Hier wirken sich die Schwingungen nicht nur auf das technische
System aus, etwa indem sie die auftretenden Krafte und Verformungen bestimmen,
sondern auch auf den Menschen, der Schwingungen in bestimmten Situationen
als unangenehm wahrnimmt. Die Beschéaftigung mit Schwingungen und die Suche
nach Moglichkeiten zu ihrer Vermeidung, oder zumindest ihrer Minderung, zdhlt
deshalb zu den klassischen Aufgaben des Ingenieurs. Entsprechende Vorlesungen zur
»Schwingungslehre*“ werden an Fachhochschulen und Universitdten in der Regel im
Rahmen der Lehrveranstaltungen zur Technischen Mechanik und Maschinendynamik
angeboten.

Man kann Schwingungen nach unterschiedlichen Kriterien kennzeichnen und zum Bei-
spiel in mechanische Schwingungen, elektromagnetische Schwingungen usw. gliedern.
Meist zieht man jedoch den zeitlichen Verlauf heran und spricht von harmonischen,
periodischen und quasiperiodischen Schwingungen, wenn es sich um deterministische
Vorgéange handelt, oder von stationdren und instationdren Zufallsschwingungen,
wenn die Vorginge scheinbar regellos sind. Bei solchen Zufallsschwingungen ist es
in bestimmten Féllen moglich, statistische Groflen, wie Mittelwert, Standardabwei-
chungen, usw. zur Beschreibung zu verwenden. Wir werden darauf aber nicht weiter
eingehen. Fine weitere Moglichkeit zur Charakterisierung von Schwingungen besteht
darin, ihre Ursache zu nennen: freie Schwingungen, erzwungene Schwingungen, selbs-
terregte Schwingungen und parametererregte Schwingungen, s. Abb. 1.1. Und nicht
zuletzt gibt es die Moglichkeit, Schwingungen danach zu charakterisieren, wie viele
Freiheitsgrade das System besitzt, in dem sie auftreten. Dieser Gliederung werden
wir folgen und nach und nach Schwingungen in Systemen mit einem Freiheitsgrad,
Schwingungen in Systemen mit mehreren Freiheitsgraden und schliellich in Sys-
temen mit unendlich vielen Freiheitsgraden, ndmlich in mechanischen Kontinua
wie der Saite, dem Stab und dem Balken, betrachten. Eine erste Einfithrung in die
Schwingungslehre hatten wir bereits in TM 3 gegeben. Dort wurden allerdings nur
Systeme mit maximal zwei Freiheitsgeraden behandelt, wihrend hier in TM 4 auch
Systeme mit sehr vielen Freiheitsgraden betrachtet werden. Dabei konzentrieren
wir uns auf Schwingungen in linearen Systemen, bei denen eine Superposition von
Losungsanteilen zuléssig ist.
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Bei der Behandlung von ingenieurwissenschaftlichen Fragestellung verwenden wir
Ersatzsysteme, die wir erhalten, indem nur die fiir die jeweils betrachtete Frage-
stellung wesentlichen Punkte beriicksichtigt werden und vereinfachende Annahmen
getroffen werden. In der Schwingungslehre bestehen diese Ersatzmodelle meist aus
Federn, Dampfern, Massepunkten und starren Korpern, in denen man sich die Nach-
giebigkeit des Systems, seine Energiedissipation sowie die Triagheitseigenschaften
in diskreten Elementen konzentriert vorstellt. Natiirlich ist dies in jedem Fall nur
eine Naherung. Andererseits bietet dieses Vorgehen den Vorteil, dass die Ergebnisse,
die wir fiir eine bestimmte Klasse von Ersatzmodellen erzielen, fiir eine grofle Zahl
praktischer Anwendungen relevant sind, unabhéngig davon, wie die konstruktiven
Details jeweils sind, solange nur die Modellbildung auf das gleiche Ersatzmodell
fiihrt. Die Bildung von Ersatzmodellen erfordert in der Regel viel Erfahrung. Wir
werden deshalb stets von bereits gegebenen Ersatzmodellen ausgehen und deren
Verhalten untersuchen.
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1.1: Ersatzmodell fiir freie, erzwungene, selbsterregte und parametererregte
Schwingungen

Die zur Untersuchung von Schwingungen verwendeten Ersatzmodelle werden durch
Systemparameter (Lingenabmessungen, Massen, Trigheitsmomente, Federsteifig-
keiten, usw.) festgelegt und ihr jeweiliger Zustand wird durch Zustandsgrofien
(Verschiebungen, Geschwindigkeiten, usw.) beschrieben. Das Verhalten der Systeme
wird durch Bewegungsgleichungen mathematisch beschrieben und hangt stark davon
ab, in welcher Form das System mit seiner Umgebung in Wechselwirkung steht.
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Neben freien Schwingungen, bei denen das System mit vorgegebenen Anfangsbedin-
gungen startet und sich selbst iiberlassen wird, werden verschiedene Formen der
Schwingungsanregung betrachtet, bei denen z. B. der Verlauf einer dufleren Kraft,
die auf das System einwirkt (Kraftanregung), oder die Verschiebung eines Punktes
des Systems (Weganregung), oder die Drehzahl einer mit Unwucht umlaufenden
Welle (Unwuchtanregung) gegeben ist.

Von grundlegender Bedeutung fiir die Schwingungslehre ist der Begriff des Frei-
heitsgrades, den wir bereits in TM 3 kennengelernt haben. Die minimale Anzahl
an unabhéngigen skalaren Groflen (verallgemeinerte Koordinaten), mit denen man
die Lage eines mechanischen Systems eindeutig beschreiben kann, ist die Anzahl
der Freiheitsgrade des Systems. Je nach der zu untersuchenden Fragestellung und
den konstruktiven Randbedingungen der betrachteten Systeme kann die Anzahl der
Freiheitsgrade von einem, bzw. wenigen Freiheitsgraden bis zu mehreren Tausend
oder mehreren Millionen Freiheitsgraden gehen. Abb. 1.2 zeigt Beispiele typischer
Ersatzmodelle. Die in Abb. 1.2a) und Abb. 1.2b) dargestellten Ersatzmodelle werden
in der Fahrzeugdynamik verwendet, wobei das sogenannte Viertelfahrzeugmodell
zur isolierten Betrachtung von Hub- Nick- oder Wankschwingungen benutzt werden
kann, wihrend das Gesamtfahrzeugmodell die gleichzeitige Betrachtung dieser Be-
wegungen erlaubt. Das angedeutete Finite-Elemente-Ersatzmodell stellt eine sehr
detaillierte Beschreibung eines Schaufelkranzes mit etwa 500.000 Freiheitsgraden
dar, wihrend das Mehrmassen-Ersatzmodell nur bestimmte Schwingungsformen des
Schaufelkranzes abbildet. Je weniger Freiheitsgrade ein System hat, desto einfacher
ist es in der Regel zu untersuchen. Man ist deshalb meist daran interessiert, die
Anzahl der Freiheitsgrade so klein wie moglich zu halten. Im Extremfall gelangt
man so zu einem System mit nur einem Freiheitsgrad, bei dem nur eine einzige
verallgemeinerte Koordinate zur Beschreibung verwendet wird.

Nicht immer sind die Schwingungen, mit denen wir uns beschéftigen, regelméafig.
H&ufig haben wir es mit mehr oder weniger regellosen Zeitverldufen zu tun, etwa
wenn es sich um winderregte Schwingungen eines Bauwerkes handelt, oder wenn
wir die Kréifte und Verschiebungen in einem Fahrzeug betrachten, das iiber eine
unebene Fahrbahn, z. B. eine Schotterpiste, fahrt.

Im nachfolgenden Kapitel 2 werden wir die grundlegenden Methoden und Werk-
zeuge zur Beschreibung von Schwingungen kennenlernen und anschlieflend Systeme
mit einem Freiheitsgrad untersuchen. Der Ubergang zu Systemen mit mehreren
Freiheitsgraden erfolgt in Kapitel 4, wo Systeme mit zwei Freiheitsgraden betrachtet
werden, bevor in Kapitel 5 der allgemeine Fall von Systemen mit einer beliebig
groflen, aber endlichen Anzahl von Freiheitsgraden behandelt wird. Die Schwingun-
gen mechanischer Kontinua werden in Kapitel 6 betrachtet, wobei wir uns sowohl
mit der Wellenausbreitung als auch mit Eigenschwingungen bei verschiedenen Rand-
bedingungen beschéftigen werden.
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1.2: Typische Ersatzmodelle:
a) Viertelfahrzeugmodell
b) Gesamtfahrzeugmodell
c) Finite Elemente Ersatzmodell fiir Schaufelkranz
d) Mehrmassen-Ersatzmodell fiir Schaufelkranz




2 Beschreibung von Schwingungen

2.1 Harmonische Schwingungen

2.1.1 Die Parameter harmonischer Schwingungen

Eine Zeitfunktion z (¢) nennen wir harmonisch, wenn sie sich in der Form
x (t) = Cp + C cos (wt) + Ssin (wt) (2.1)
darstellen ldsst. Die harmonische Schwingung ist periodisch, d. h., es gilt
z(t+T)=2z(t), (2.2)

mit der Schwingungsdauer

2w
T=—
" (2.3)
und der Frequenz
1 w
= T om (2.4)

Der positive Parameter w wird Kreisfrequenz genannt, und die Konstanten Cy, C
und S bezeichnen wir als FOURIER-Koeffizienten®.

Die harmonische Schwingung (2.1) kann ebenso gut in der Form
x(t) =T+ & cos (wt + ) (2.5)

geschrieben werden, in der anstelle der drei FOURIER-Koeffizienten die drei Pa-
rameter Mittelwert Z, Amplitude 2 und Nullphasenwinkel « auftreten. Der Null-
phasenwinkel « liegt im Intervall (—m, 7] und gibt an, um welche Nullphasenzeit
5-1" das Maximum der Schwingung gegeniiber dem Zeitnullpunkt verschoben ist.
Ein positiver Nullphasenwinkel bedeutet, dass das Maximum der Cosinus-Funktion
in (2.5) zu einer negativen Zeit verschoben ist. Der Zusammenhang zwischen den
Fourlier-Koeffizienten und den Gréfien Z, Z und « ist durch

z = Cy, & =+C?+ 52,
-S o5 (@) = C (2.6)
VCZ + 52 VCZ + 52

I Nach Jean Baptiste Joseph FOURIER, franzosischer Mathematiker, *1768 in Auxerre, 11830 in
Paris.

sin (o) =
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bzw.
Co =1, C = Zcos(a), S = —&sin (a) (2.7)

gegeben, wobei die dritte und vierte Gleichung von (2.6) auf unendlich viele Losungen
von « flihrt, die sich jeweils um Vielfache von 27 unterscheiden. Durch Bilden des
Hauptwertes wéihlen wir diejenige Losung fiir « aus, die im Intervall (—, 7] liegt.

Wir héitten die harmonische Schwingung (2.1) auch als
z(t) =7 + &sin (wt + B) (2.8)

schreiben kénnen, mit denselben Werten von Z, £ und w, jedoch einem anderen
Winkel 8 = a + 5. Im Folgenden verwenden wir stets die Darstellung (2.1) oder
(2.5) als ,Standard-Form* einer harmonischen Schwingung.

Die Zeitableitung einer harmonischen Funktion ist ebenfalls harmonisch. Das heift,
wenn z. B. z (t) geméB (2.5) eine Auslenkung beschreibt, dann sind die Geschwin-
digkeit

z (t) = —Zwsin (wt + a) = Fw cos (wt +a+ g) (2.9)

und die Beschleunigung

2

i (t) = —2w? cos (wt + a) = Fw? cos (wt + o+ 7) (2.10)

ebenfalls harmonische Schwingungen, deren Amplituden sich von der Amplitude
der Auslenkung genau um den Faktor w, bzw. w? unterscheiden. Die Schwingungen
nehmen ihre jeweiligen Maxima zu unterschiedlichen Zeitpunkten an, und die
Phasenverschiebung zwischen Auslenkung und Geschwindigkeit sowie zwischen
Geschwindigkeit und Beschleunigung betrigt jeweils 7, bzw. 90°. Dabei bedeutet
die positive Phasenverschiebung von 7 zwischen Auslenkung und Geschwindigkeit,
dass die Geschwindigkeit der Auslenkung um ein Viertel der Schwingungsdauer,
d.h. um %, zeitlich vorauseilt. Gleiches gilt fiir die Beschleunigung gegeniiber der
Geschwindigkeit. Bei einer harmonischen Schwingung sind also Beschleunigung und

Auslenkung genau in Gegenphase.

T T, T
1

2.1: Auslenkung (—) und Geschwindigkeit (—) gemaB (2.5) und (2.9) mit
z=0
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2.1.2 Komplexe Schreibweise harmonischer Schwingungen

Eine komplexe Zahl z kénnen wir durch einen Punkt in der GAUSS’schen? Zahlen-
ebene darstellen®. Mit der Schreibweise

T =+, z, = Rez], x; = Im [z], (2.11)
unter Verwendung von Real- und Imaginéarteil, und mit der Schreibweise
l:xejva z = |z, v = arg [z], (2.12)

unter Verwendung von Betrag und Argument, stehen uns zwei verschiedene Darstel-
lungsformen fiir komplexe Zahlen zur Verfiigung. Der Zusammenhang zwischen den
Groflen ist dabei

xy = xcos (), x; = xsin () (2.13)
und
Ly

i - (2.14)

— S22 ; _
x =/ a2+ a?f, sm(v)—\/m, cos () RN

vgl. Abb. 2.2. Der in der Darstellung angegebene Betrag |z| gibt die Lange des
komplexen Zeigers x in der GAUSS’schen Zahlenebene an.

Im

] . 0L

arg [z]

Rel[@ Re

2.2: Darstellung der komplexen Zahl z in der GAUSS'schen Zahlenebene

Es ist nun leicht einsichtig, dass man die harmonische Schwingung (2.5) auch als

% (f) = Rela (1)) = Re [2 + f:ej<wffa>} | (2.15)
= Re [T+ 2e/e/"] =T + Re [267*'] |
mit

7 = Re(z], 2=z, (2.16)

2 Nach Johann Friedrich GAUSS, deutscher Mathematiker, *1777 Braunschweig, 11855 Géttingen

3 Wir kennzeichnen komplexe Zahlen durch Unterstreichen des Formelzeichens, verwenden den
Buchstaben j = v/—1 fiir die imaginidre Einheit und bezeichnen mit z* die zu z konjugiert
komplexe Grofe.
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schreiben kann. Dementsprechend ist
z(t) =T+ ze’" (2.17)

eine komplexe harmonische Funktion, die sich, wie in Abb. 2.3 gezeigt, als Zeigerdia-
gramm darstellen lasst. Der Punkt z (¢) durchlauft im Verlauf der Zeit einen Kreis
mit Mittelpunkt Z und Radius |£|. Der Zeiger rotiert mathematisch positiv, d.h.
entgegen dem Uhrzeigersinn mit der Winkelgeschwindigkeit w, und startet bei t = 0
in der durch den Nullphasenwinkel a gegebenen Lage.

t=t*>0
Im t=0

1
|
1
|
1
t !

2.3: Zeigerdiagramm der komplexen harmonischen Funktion (2.17) und
zugehoriger Realteil

Da fiir komplexe Zahlen z der Zusammenhang
1
Re(z] = S(z+2%) (2.18)
gilt, kann man die reelle harmonische Schwingung (2.5) auch als

1 . ,
(t) =3 [Z+2* + 2/ + 2% e 7] (2.19)

schreiben, so dass man auf das Zeigerdiagramm der Abb. 2.4 gefiihrt wird. In dieser
Abbildung kennzeichnet % || die Lange der komplexen Zeiger %@, bzw. %i*
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t=t*>0

Im

8
=
=
o

N|—
=

wt

x (t)

2.4: Zeigerdiagramm der komplexen harmonischen Funktion (2.19)

Besonders anschaulich lasst sich der Zusammenhang zwischen der komplexen har-
monischen Funktion und ihren Zeitableitungen im Zeigerdiagramm darstellen. Die
komplexe harmonische Funktion

z(t) = ze’ (2.20)
hat die Zeitableitungen

= )

=]
i = (jw)? 2/t = —w2e@t = W2ged W) (2.22)

wielt = wpel (W13) 2.21)

und man erkennt, dass die komplexe Amplitude der Geschwindigkeit aus der komple-
xen Amplitude der Auslenkung durch Multiplikation mit jw hervorgeht, was zu einer
Phasenverschiebung von § = 90° fiihrt. Ein entsprechender Zusammenhang besteht
auch zwischen den komplexen Amplituden von Geschwindigkeit und Beschleunigung.
Abb. 2.5 zeigt die komplexen Amplituden von Auslenkung, Geschwindigkeit und
Beschleunigung in der GAUSS’schen Zahlenebene.

2.5: Die komplexen Amplituden von Auslenkung, Geschwindigkeit und
Beschleunigung stehen senkrecht aufeinander
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2 Beschreibung von Schwingungen

2.1.3 Uberlagerung harmonischer Schwingungen gleicher
Kreisfrequenz

Wir betrachten zwei harmonische Schwingungen gleicher Kreisfrequenz w:

x1 (t) = T1 + &1 cos (wt + aq) (2.23a)
X (t) = Ty + &9 cos (wt + ag) . (2.23b)

Stimmen die beiden Nullphasenwinkel iiberein, so nennen wir die Schwingungen in
Phase. Nimmt die Differenz ais — a; den Wert 7 an, so sind die beiden Schwingungen
in Gegenphase. Im allgemeinen Fall definieren wir den Phasenverschiebungswinkel

U =Hw(ag —aq) (2.24)

als Hauptwert der Differenz der beiden Nullphasenwinkel. Abb. 2.6 zeigt die drei
Falle und das jeweilige Zeigerdiagramm. In diesem Zeigerdiagramm sind £; und 2,
die Bezeichnungen der jeweiligen komplexen Zeiger, wihrend zuvor in den Abb. 2.2
bis Abb. 2.5 jeweils die Lingen der Zeiger angegeben waren.

a) Z

Im?® 4
Ty1,T2 xr1 *2'/

Im

1
1
1
\
Ay
AY
4
’
1
1
1
)
|
S
A
.
~
|&>
@

Im
1‘171:2 ,’El 'l w

| et }fz‘\ t Re

g — (X1

2.6: Harmonische Schwingungen gleicher Frequenz: a) in Phase an = ax,
b) in Gegenphase as — a1 = 7, ¢) allgemeiner Fall ¥ = Hw (a2 — a1)
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Als Néchstes betrachten wir die Uberlagerung

x(t) =21 (t) +22(t)

o o (2.25)
=T + &1 cos (wt + a1) + Tg + &9 cos (wt + ag)

der beiden harmonischen Schwingungen. Mithilfe trigonometrischer Umformungen
erhalten wir

x (t) = T1 + Ta + [1 cos (1) + &2 cos (az)] cos (wt)
— [#1 sin (a1) 4 29 sin (ap)] sin (wt) ; (2.26)

dies ist eine harmonische Schwingung mit Mittelwert T; + T2 und den in ecki-
gen Klammern stehenden FOURIER-Koeffizienten, vgl. (2.1). Sie lédsst sich in die
Standardform (2.5) als

x(t) =T+ & cos (wt + ) (2.27)
mit

T =T + To,

T = \/{fﬁ% + 2{%151\,'2 COS (041 - CKQ) + fﬁ%, (228)

_ @psin (o) + 2o sin (ag)

&1 cos (a1) + &g cos (an)
iiberfithren.*

Unter Verwendung der komplexen Erweiterung (2.15) gestaltet sich die Rechnung
deutlich einfacher. Mit

2y () =T + 2, & =3, (2.29a)

z (1) =To + 207", By = B (2.29b)
ergibt sich

z(t) =z, (1) + 25 (1) =T1 + T2 + (&) + &)’ (2.30)

Dies ist genau die komplexe Erweiterung von (2.27), wie man leicht nachrechnen
und noch einfacher im Zeigerdiagramm der Abb. 2.7 ablesen kann.

4 Hier ergibt sich, wie schon vorhin bei (2.7) ein eindeutiger Winkel erst durch Bilden des
Hauptwertes
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Im

x 'fl' To Re

2.7: Zeigerdiagramm zur Uberlagerung zweier harmonischer Schwingungen
gleicher Kreisfrequenz

2.1.4 Uberlagerung harmonischer Schwingungen
unterschiedlicher Kreisfrequenz

Unter Zuhilfenahme des Zeigerdiagramms erkennt man sofort, dass die Uberlagerung
zweier harmonischer Schwingungen unterschiedlicher Kreisfrequenz keine harmoni-
sche Schwingung ist, da die Zeiger ja unterschiedlich schnell umlaufen. Wenn die
durch die jeweiligen Kreisfrequenzen festgelegten Umlaufzeiten so sind, dass nach
einer bestimmten Zeit T beide Zeiger eine ganzzahlige Anzahl an Umdrehungen
zuriickgelegt haben, ergibt sich die Uberlagerung als periodische Schwingung, weil
sich dann nach der Zeit T die Bewegung in genau gleicher Weise wiederholt. Beide
Zeiger sind nun wieder in ihrer urspriinglichen Startposition. Die mathematische
Bedingung dafiir ist

wiT =m-2m, wol =n- 27, m, n € N. (2.31)

Immer dann, wenn das Verhéltnis der beiden Kreisfrequenzen eine rationale Zahl
ist, d. h. wenn

“A_Tco (2.32)
%) n

gilt, ergibt sich eine periodische Schwingung. Man nennt die Schwingungen dann

kommensurabel. Falls die Kreisfrequenzen der iiberlagerten Schwingungen nicht

im Verhéltnis zweier ganzer Zahlen stehen, nennt man die Kreisfrequenzen in-

kommensurabel und die Uberlagerung der beiden harmonischen Schwingungen ist

nicht-periodisch.

Von besonderem Interesse ist die Uberlagerung, wenn die Kreisfrequenzen der
beiden harmonischen Schwingungen dicht benachbart sind. Wir betrachten dies
fiir den Sonderfall verschwindender Mittelwerte (T3 = 7Tz = 0), verschwindender
Nullphasenwinkel (o = ag = 0) und gleicher Amplitude (#; = &3 = £). Aus

x (t) = & cos (w1t) + T cos (wat) (2.33)

erhalten wir nach kurzer Zwischenrechnung

x (t) = 2% cos <wl;w2t) cos (wlngt> , (2.34)



