
euronale Netze 
nd Deep Learning 
I N

u





3

1 Einbettungen, latenter Raum und 
Repräsentationen
Beim Deep Learning sind Begriffe wie Einbettungsvektoren, 
Repräsentationen und latenter Raum gebräuchlich. Was haben diese 

Konzepte gemeinsam und wie unterscheiden sie sich?

Auch wenn diese drei Begriffe oft synonym verwendet werden, können wir zwi-
schen ihnen feine Unterscheidungen treffen:

■ Einbettungsvektoren sind Repräsentationen von Eingabedaten, bei denen ähn-
liche Elemente nahe beieinanderliegen.

■ Latente Vektoren sind Zwischenrepräsentationen von Eingabedaten.
■ Repräsentationen sind codierte Versionen der ursprünglichen Eingabedaten.

Die folgenden Abschnitte untersuchen die Beziehung zwischen Einbettungen, la-
tenten Vektoren und Repräsentationen. Außerdem erfahren Sie, wie sie jeweils im
Kontext des maschinellen Lernens Informationen codieren.

1.1 Einbettungen

Einbettungsvektoren – kurz Einbettungen – codieren relativ hochdimensionale
Daten in relativ niedrigdimensionale Vektoren.

Mithilfe von Einbettungsmethoden können wir einen kontinuierlichen dich-
ten (nicht-dünnbesetzten) Vektor aus einer (dünnbesetzten) 1-aus-n-Codierung
(englisch One-hot encoding) erzeugen. Die 1-aus-n-Codierung ist eine Methode,
um kategoriale Daten als binäre Vektoren darzustellen, wobei jede Kategorie auf
einen Vektor abgebildet wird, der an der Position, die dem Index der Kategorie
entspricht, eine 1, und an allen anderen Positionen eine 0 enthält. Damit ist si-
chergestellt, dass die kategorialen Werte so dargestellt werden, dass bestimmte
Algorithmen für maschinelles Lernen sie verarbeiten können. Wenn wir zum Bei-
spiel eine kategoriale Variable Farbe mit den drei Kategorien Rot, Grün und Blau ha-
ben, stellt die 1-aus-n-Codierung Rot als [1, 0, 0], Grün als [0, 1, 0] und Blau als [0,
0, 1] dar. Diese 1-aus-n-codierten kategorialen Variablen lassen sich dann in kon-



1 Einbettungen, latenter Raum und Repräsentationen4
tinuierliche Einbettungsvektoren abbilden, indem die gelernte Gewichtsmatrix ei-
ner Einbettungsschicht oder eines Moduls verwendet wird.

Einbettungsmethoden eignen sich auch für dichte Daten wie Bilder. Zum Bei-
spiel können die letzten Schichten eines Convolutional Neural Networks (CNN)
Einbettungsvektoren liefern, wie Abbildung 1–1 veranschaulicht.

Abb. 1–1 Eine Eingabeeinbettung (links) und eine Einbettung von einem neuronalen Netz (rechts)

Um technisch korrekt zu sein, könnten alle Ausgaben der Zwischenschicht eines
neuronalen Netzes Einbettungsvektoren liefern. Je nach Trainingsziel kann auch
die Ausgabeschicht nützliche Einbettungsvektoren erzeugen. Der Einfachheit hal-
ber assoziiert das Convolutional Neural Network in Abbildung 1–1 die vorletzte
Schicht mit Einbettungen.

Es ist möglich, dass Einbettungen eine höhere oder niedrigere Anzahl von Di-
mensionen haben als die ursprüngliche Eingabe. Mithilfe von Einbettungsmetho-
den für extreme Ausdrücke lassen sich beispielsweise Daten in zweidimensionale
dichte und kontinuierliche Darstellungen für Visualisierungszwecke und Cluster-
ing-Analysen codieren, wie Abbildung 1–2 zeigt.

Abb. 1–2 Abbildung von Wörtern (links) und Bildern (rechts) auf einen zweidimensionalen 

Merkmalsraum

0
0
0
0
0
0

…

0
1
0

1-aus-n-
codierte
Eingabe

(dünnbesetzt)

1,34
-0,14
2,61
4,89

-1,94

Einbettung
(dicht)

Faltungsschichten

Von einem CNN (Convolutional Neural Network)
gelernte Einbettungen

Ausgabeschicht

Einbettung

Eingabebild

x
2

x
1

Shoe

Shirt
Cat

DogTiger

Swimming

Fish

2D-Worteinbettungen 2D-Einbettungen handgeschriebener Ziffern

Computer

Coding

x
2

x
1



51.2 Latenter Raum
Zu den grundlegenden Eigenschaften von Einbettungen gehört, dass sie Abstand
oder Ähnlichkeit codieren. Das bedeutet, dass Einbettungen die Semantik der Daten
so erfassen, dass ähnliche Eingaben im Einbettungsraum nahe beieinanderliegen.

Für Leser, die an einer formaleren Erklärung mittels mathematischer Termi-
nologie interessiert sind, sei erwähnt, dass eine Einbettung eine injektive und
strukturerhaltende Abbildung zwischen einem Eingaberaum X und dem Einbet-
tungsraum Y ist. Dies impliziert, dass ähnliche Eingaben an nahe beieinanderlie-
genden Punkten innerhalb des Einbettungsraums liegen, was man als »struktur-
erhaltende« Eigenschaft der Einbettung ansehen kann.

1.2 Latenter Raum

Latenter Raum wird in der Regel synonym mit Einbettungsraum verwendet, das
heißt dem Raum, in den Einbettungsvektoren abgebildet werden.

Ähnliche Elemente können im latenten Raum nahe beieinanderliegen, was je-
doch keine strikte Voraussetzung ist. Im weiteren Sinne kann man sich den laten-
ten Raum als jeden Merkmalsraum vorstellen, der Features – oftmals kompri-
mierte Versionen der ursprünglichen Eingabefeatures – enthält. Diese latenten
Raumfeatures können von einem neuronalen Netzwerk erlernt werden, beispiels-
weise einem Autoencoder, der Eingabebilder rekonstruiert, wie Abbildung 1–1
zeigt. Diese latenten Eingabefeatures können von einem neuronalen Netz gelernt
werden, beispielsweise von einem Autoencoder, der Eingabebilder rekonstruiert,
wie Abbildung 1–3 zeigt.

Abb. 1–3 Ein Autoencoder, der das Eingabebild rekonstruiert

Der Flaschenhals in Abbildung 1–3 repräsentiert eine kleine Zwischenschicht des
neuronalen Netzes, die das Eingabebild in eine Repräsentation geringerer Dimen-
sionen codiert. Den Zielraum dieser Abbildung kann man sich als latenten Raum
vorstellen. Das Trainingsziel des Autoencoders besteht darin, das Eingabebild zu
rekonstruieren, das heißt, den Abstand zwischen den Eingabe- und Ausgabebil-
dern zu minimieren. Um das Trainingsziel zu optimieren, kann der Autoencoder
lernen, die codierten Features von ähnlichen Eingaben (zum Beispiel Bilder von
Katzen) im latenten Raum nahe nebeneinander zu platzieren, dabei nützliche Ein-
bettungen von Vektoren zu erstellen, wobei ähnliche Eingaben im Einbettungs-
(latenten) Raum nahe beieinanderliegen.

AutoencoderEingabebild Ausgabebild

Flaschenhals



1 Einbettungen, latenter Raum und Repräsentationen6
1.3 Repräsentation

Eine Repräsentation ist eine codierte Form und typischerweise eine Zwischen-
form einer Eingabe. Zum Beispiel ist ein Einbettungsvektor bzw. Vektor im laten-
ten Raum eine Darstellung der Eingabe, wie oben erläutert. Allerdings können
Darstellungen auch mit einfacheren Prozeduren erzeugt werden. Zum Beispiel
lassen sich 1-aus-n-codierte Vektoren als Repräsentationen einer Eingabe be-
trachten, wie bereits oben erwähnt. Allerdings lassen sich Repräsentationen auch
durch einfachere Verfahren erzeugen. So werden zum Beispiel 1-aus-n-codierte
Vektoren als Repräsentationen einer Eingabe betrachtet.

Der Grundgedanke besteht darin, dass die Repräsentation einige wesentliche
Features oder Eigenschaften der ursprünglichen Daten erfasst, um sie weiter ana-
lysieren zu können.

1.4 Übungen

1. Angenommen, wir trainieren ein Netz mit fünf konvolutionalen Schichten,
gefolgt von drei vollständig verbundenen Schichten, ähnlich dem AlexNet
(https://en.wikipedia.org/wiki/AlexNet), wie in Abbildung 1–4 veranschau-
licht.

Abb. 1–4 Eine Veranschaulichung von AlexNet

Diese vollständig verbundenen Schichten kann man sich als zwei verdeckte
Schichten und eine Ausgabeschicht in einem mehrschichtigen Perzeptron
vorstellen. Welche Schichten dieses neuronalen Netzes lassen sich nutzen,
um nützliche Einbettungen zu erzeugen? Interessierte Leser finden weitere
Details zur Architektur und Implementierung von AlexNet in der Original-
veröffentlichung von Alex Krizhevsky, Ilya Sutskever und Geoffrey Hinton.

2. Nennen Sie einige Typen von Eingaberepräsentationen, die keine Einbettun-
gen sind.

Eingabe

1. CNN-
Schicht

2. CNN-
Schicht

3. CNN-
Schicht

4. CNN-
Schicht

5. CNN-
Schicht

1. vollständig
verbundene

Schicht

2. vollständig
verbundene Schicht

3. vollständig
verbundene Schicht
(Ausgabeschicht)

https://en.wikipedia.org/wiki/AlexNet


71.5 Referenzen
1.5 Referenzen

■ Die Architektur und Implementierung von AlexNet wird ursprünglich in fol-
gendem Paper beschrieben: Alex Krizhevsky, Ilya Sutskever und Geoffrey 
Hinton, »ImageNet Classification with Deep Convolutional Neural Net-
works« (2012), https://papers.nips.cc/paper/4824-imagenet-classification-
with-deep-convolutional-neural-networks.

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks




9

2 Selbstüberwachtes Lernen
Was ist selbstüberwachtes Lernen, wann ist es nützlich und wie 
sehen die Hauptansätze aus, um es zu implementieren?

Selbstüberwachtes Lernen ist eine Vortrainingsprozedur, die es neuronalen Net-
zen ermöglicht, große, ungelabelte Datensätze in überwachter Art und Weise zu
nutzen. Dieses Kapitel vergleicht selbstüberwachtes Lernen mit Transferlernen,
einer verwandten Methode zum Vortrainieren von neuronalen Netzen, und erör-
tert die praktischen Anwendungen von selbstüberwachtem Lernen. Schließlich
skizziert es die wichtigsten Kategorien von selbstüberwachtem Lernen.

2.1 Selbstüberwachtes Lernen vs. Transferlernen

Selbstüberwachtes Lernen ist mit dem Transferlernen verwandt, einer Technik,
bei der ein Modell, das für eine bestimmte Aufgabe vortrainiert worden ist, als
Ausgangspunkt für ein Modell für eine zweite Aufgabe wiederverwendet wird.
Nehmen wir zum Beispiel an, dass wir einen Bildklassifikator trainieren wollen,
um Vogelarten zu klassifizieren. Beim Transferlernen würden wir ein CNN (Con-
volutional Neural Network) auf dem ImageNet-Datensatz trainieren, einem gro-
ßen, gelabelten Bilddatensatz mit vielen verschiedenen Kategorien, einschließlich
verschiedener Objekte und Tiere. Nach dem Vortraining mit dem allgemeinen
ImageNet-Datensatz wird das trainierte Modell mit dem kleineren, spezifischeren
Zieldatensatz trainiert, der die interessierenden Vogelarten enthält. (Oftmals
müssen wir nur die klassenspezifische Ausgabeschicht ändern, können ansonsten
aber das vortrainierte Netz unverändert übernehmen.)

Abbildung 2–1 veranschaulicht den Ablauf beim Transferlernen.



2 Selbstüberwachtes Lernen10
Abb. 2–1 Vortraining mit konventionellem Transferlernen

Selbstüberwachtes Lernen ist ein alternativer Ansatz zum Transferlernen, bei dem
das Modell nicht mit gelabelten Daten, sondern mit ungelabelten Daten vortrai-
niert wird. Wir betrachten einen ungelabelten Datensatz, für den wir keine Label-
Informationen haben, und suchen dann nach einer Möglichkeit, Labels aus der
Struktur des Datensatzes zu erhalten, um eine Vorhersageaufgabe für das neuro-
nale Netz zu formulieren, wie Abbildung 2–2 zeigt. Diese Aufgaben für das
selbstüberwachte Training nennt man auch Voraufgaben.

Abb. 2–2 Vortraining mit selbstüberwachtem Lernen

Modell
Vortrainier-
tes Modell

(2) Transfer

(1) Vortraining

(3) Training (Feinabstimmung)
 mit Zieldatensatz

Trainings-
beispiele

Labels

Vortrainiertes
Modell

Zielspezifischer
Datensatz

Endgültiges
Modell

Trainings-
beispiele

Labels

Großer,
allgemeiner
Datensatz Einspeisen von Daten in das Modell,

das mit zufälligen Gewichten
initialisiert wurde

Einspeisen der Daten in
das vortrainierte Modell

Modell
Vortrainiertes

Modell

(2) Transfer

(1) Selbstüberwachtes
 Vortraining

(3) Training (Feinabstimmung)
 mit Zieldatensatz

Trainings-
beispiele

Labels

Vortrainiertes
Modell

Zielspezifischer
Datensatz

Endgültiges
Modell

Trainings-
beispiele

Labels

Großer,
allgemeiner Datensatz

Extrahieren,
»machen«



112.2 Ungelabelte Daten nutzen
Der Hauptunterschied zwischen Transferlernen und selbstüberwachtem Lernen
liegt in der Art und Weise, wie wir die Labels in Schritt 1 der Darstellungen von
Abbildung 2–1 und Abbildung 2–2 erhalten. Beim Transferlernen gehen wir da-
von aus, dass die Labels zusammen mit dem Datensatz bereitgestellt werden. In
der Regel werden die Labels manuell von Label-Experten den Daten zugeordnet.
Beim selbstüberwachten Lernen lassen sich die Labels direkt aus den Trainings-
beispielen ableiten.

Eine Aufgabe des selbstüberwachten Lernens könnte eine Vorhersage fehlen-
der Wörter im Kontext der Verarbeitung natürlicher Sprache sein. Zum Beispiel
können wir bei dem Satz »Draußen ist es schön und sonnig« das Wort »sonnig«
ausmaskieren, dem Netz die Eingabe »Draußen ist es schön und [MASKE]« ein-
speisen und das Netz das fehlende Wort an der Position »[MASKE]« vorhersagen
lassen. In ähnlicher Weise könnten wir in einem Computer-Vision-Kontext Bild-
ausschnitte entfernen und das neuronale Netz die Lücken füllen lassen. Dies sind
lediglich zwei Beispiele für Aufgaben des selbstüberwachten Lernens; es gibt viele
weitere Methoden und Paradigmen für diese Art des Lernens.

Zusammenfassend lässt sich sagen, dass man selbstüberwachtes Lernen bei
der Voraufgabe als Repräsentationslernen betrachten kann. Wir können das vor-
ab trainierte Modell verwenden, um es für die Zielaufgabe (auch bekannt als die
Downstream-Aufgabe) zu optimieren.

2.2 Ungelabelte Daten nutzen

Große Architekturen neuronaler Netze benötigen große Mengen an gelabelten
Daten, um eine gute Leistung und Generalisierung zu erzielen. Für viele Problem-
bereiche haben wir jedoch keinen Zugang zu großen, gelabelten Datensätzen.
Beim selbstüberwachten Lernen können wir ungelabelte Daten nutzen. Daher ist
selbstüberwachtes Lernen beim Arbeiten mit großen neuronalen Netzen und mit
einer begrenzten Menge von gelabelten Trainingsdaten höchstwahrscheinlich
nützlich.

Transformer-basierte Architekturen, die die Grundlage der LLMs und Vision
Transformer bilden, erfordern bekanntermaßen selbstüberwachtes Lernen für
das Vortraining, um gute Leistungen zu erzielen.

Für kleine Modelle von neuronalen Netzen wie zum Beispiel mehrschichtige
Perzeptrons mit zwei oder drei Schichten wird selbstüberwachtes Lernen in der
Regel weder als nützlich noch als notwendig erachtet.

Selbstüberwachtes Lernen ist auch beim herkömmlichen maschinellen Lernen
mit nichtparametrischen Modellen wie baumbasierten Random Forests oder
Gradient Boosting nicht sinnvoll. Konventionelle baumbasierte Methoden besit-
zen keine feste Parameterstruktur (im Gegensatz zum Beispiel zu den Gewichts-
matrizen). Daher sind konventionelle baumbasierte Methoden nicht zum Trans-
ferlernen fähig und mit selbstüberwachtem Lernen nicht kompatibel.


