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Vorwort zur 1. Auflage

Das Buch „Vorklasse Physik“ deckt alle Lernbereiche des LehrplanPLUS für die Fachoberschul(FOS)-
Vorklasse 10 und die Berufsoberschul(BOS)-Vorklasse 11 im Fach Physik in Bayern ab. Dementsprechend 
werden im Kapitel 1 die Grundlagen der Mechanik (Mechanik I und II laut LehrplanPLUS), im Kapitel 2 die 
Grundlagen der Elektrizitätslehre, im Kapitel 3 die Grundlagen der Wärmelehre und im Kapitel 4 die Grund-
lagen der Optik beschrieben.

In den oben genannten Kapiteln werden die grundlegenden physikalische Gesetze und Theorien des jewei-
ligen Lernbereichs beschrieben. Mithilfe der physikalischen Gesetze werden Berechnung und qualitative 
Erklärungen in verschiedenen Sachzusammenhängen durchgeführt. Ziel ist es, dass die Schülerinnen und 
Schüler erkennen, dass die Natur tatsächlich durch physikalische Gesetze und Theorien abgebildet wird und 
somit physikalische Vorgänge der Natur gewissenmaßen vorhersagbar bzw. erklärbar sind. In diesem Buch 
wird außerdem darauf Wert gelegt, dass die physikalischen Gesetze nicht nur angewendet werden, sondern 
dass die Schülerinnen und Schüler erfahren, wie man durch Experimente bzw. durch deren Auswertung auf 
die jeweiligen physikalischen Gesetze kommt. 

Die einzelnen physikalischen Zusammenhänge sind in diesem Buch jeweils kleinschrittig, schülergerecht 
und bildhaft beschrieben. Das Buch kann somit als Nachschlagwerk für Schülerinnen und Schüler außer-
halb des Unterrichts eingesetzt werden, aber auch als Informationsquelle in einer schüleraktiven Erarbei-
tungsphase während des Unterrichts verwendet werden.

Wir wünschen Ihnen viel Freude mit unserem Buch und interessieren uns für Ihre Meinung! Teilen Sie uns 
Verbesserungsvorschläge, Kritik – gerne auch Lob – mit:

lektorat@europa-lehrmittel.de

München, Frühjahr 2024� Die Autoren 



4 ﻿

Kapitel 1 – Mechanik . . . . . . . . . . . . . . . . . . . . .                     	 5
1.1	 Einführung in die Physik . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             	 5
1.2	 Eigenschaften von Körpern . . . . . . . . . . . . . . . . . . . . . . . . .                          	 6
1.2.1	 Masse von Körpern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                   	 6
1.2.2	 Dichte eines Körpers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 	 6
1.2.3	 Experimentelle Herleitung der Formel für die Dichte – 

direkte Proportionalität  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              	 7
1.3	 Bewegungen von Körpern . . . . . . . . . . . . . . . . . . . . . . . . . .                           	 9
1.3.1	 Bedeutung des Bezugssystems . . . . . . . . . . . . . . . . . . . . . . .                        	 9
1.3.2	 Geradlinige, gleichförmige Bewegungen . . . . . . . . . . . . .              	 9
1.3.3	 Geradlinige, gleichmäßig beschleunigte Bewegungen 	 14
1.4	 Kräfte an Körpern  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                   	 17
1.4.1	 Wirkung von Kräften auf Körpern . . . . . . . . . . . . . . . . . . .                    	 17
1.4.2	 Die Gewichtskraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 17
1.4.3	 Die Kraft als gerichtete Größe . . . . . . . . . . . . . . . . . . . . . . .                        	 19
1.4.4	 Die Newtonsche Axiome . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             	 26
1.4.5	 Reibkraft  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                             	 30
1.4.6	 Kräfte an einer schiefen Ebene . . . . . . . . . . . . . . . . . . . . . . .                        	 34
1.4.7	 Auftriebskraft – archimedisches Prinzip . . . . . . . . . . . . .              	 40
1.4.8	 Bestimmung der Dichte einer Flüssigkeit mit  

einem Aräometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     	 41
1.5	 Drehmoment und Hebelgesetze . . . . . . . . . . . . . . . . . . . . 	 43
1.5.1	 Berechnung des Drehmoments . . . . . . . . . . . . . . . . . . . . . .                       	 43
1.5.2	 Das Hebelgesetz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      	 44
1.5.3	 Kraftwandler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         	 48
1.6	 Mechanische Arbeit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 	 54
1.6.1	 Definition und Kraft-Weg-Diagramm . . . . . . . . . . . . . . . .                 	 54
1.6.2	 Arten von mechanischer Arbeit . . . . . . . . . . . . . . . . . . . . .                      	 55
1.7	 Mechanische Energie  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                	 59
1.7.1	 Potentielle Energie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 59
1.7.2	 Kinetische Energie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 60
1.7.3	 Spannenergie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         	 61
1.8	 Energieumwandlungen und Energieerhaltungssatz 	 62
1.8.1	 Energieerhaltungsgesetz . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              	 62
1.8.2	 Idealisierte Energieumwandlungen ohne Reibung  . . .    	 62
1.8.3	 Energieumwandlungen mit Reibung . . . . . . . . . . . . . . . . .                  	 64
1.8.4	 Energieumwandlungen in Natur und Technik  . . . . . . .        	 66
1.9	 Mechanische Leistung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               	 66

Kapitel 2 – Grundlagen der  
Elektrizitätslehre  . . . . . . . . . . . . . . . . . . . .                    	 69

2.1	 Der elektrische Stromkreis  . . . . . . . . . . . . . . . . . . . . . . . . .                          	 69
2.1.1	 Die elektrische Spannung . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             	 70
2.1.2	 Der elektrische Strom  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                	 71
2.1.3	 Der elektrische Widerstand und der elektrische  

Leitwert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                              	 72
2.1.4	 Leiterwiderstand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     	 72
2.1.5	 Ohmsches Gesetz  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 73
2.2	 Messen elektrischer Größen . . . . . . . . . . . . . . . . . . . . . . . .                         	 74
2.2.1	 Messen der elektrischen Spannung U . . . . . . . . . . . . . . . .                 	 74
2.2.2	 Messen des elektrischen Stroms I  . . . . . . . . . . . . . . . . . . .                    	 75
2.2.3	 Messen des elektrischen Widerstands R . . . . . . . . . . . . .              	 76
2.3	 Anschluss elektrischer Geräte . . . . . . . . . . . . . . . . . . . . . .                       	 77
2.3.1	 Reihenschaltung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      	 77
2.3.2	 Parallelschaltung  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     	 79
2.3.3	 Gemischte Schaltung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 	 81
2.4	 Betrieb elektrischer Geräte . . . . . . . . . . . . . . . . . . . . . . . . .                          	 84
2.4.1	 Elektrische Arbeit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 85
2.4.2	 Elektrische Leistung  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  	 85
2.4.3	 Wirkungsgrad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        	 86
2.4.4	 Wirkungen des elektrischen Stroms . . . . . . . . . . . . . . . . .                  	 88
2.4.5	 Fehler in elektrischen Anlagen . . . . . . . . . . . . . . . . . . . . . . .                        	 89
2.4.6	 Spannungen im Fehlerfall . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             	 90
2.4.7	 Schutzmaßnahmen im Umgang mit  

elektrischem Strom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                   	 90

Inhaltsverzeichnis

Kapitel 3 – Wärmelehre . . . . . . . . . . . . . . . . . .                  	 95
3.1	 Teilchenmodell, Temperatur und Wärmeenergie . .   	 95
3.1.1	 Teilchenmodell und Aggregatzustände . . . . . . . . . . . . . .               	 95
3.1.2	 Deutung der Temperatur . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             	 97
3.1.3	 Wärmeenergie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        	 99
3.2	 Temperaturverhalten von Körpern  . . . . . . . . . . . . . . . .                 	 99
3.2.1	 Längenänderung von Festkörpern . . . . . . . . . . . . . . . . . . .                    	 99
3.2.2	 Volumenänderung von Festkörpern und  

Flüssigkeiten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          	 103
3.2.3	 Anomalie des Wassers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                	 106
3.3	 Aufbau und Funktionsweise verschiedener  

Thermometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        	 108
3.3.1	 Flüssigkeitsthermometer . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             	 108
3.3.2	 Bimetallthermometer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                	 109
3.4	 Wärme als Energieform . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              	 110
3.4.1	 Die kalorische Grundgleichung . . . . . . . . . . . . . . . . . . . . . .                       	 110
3.4.2	 Herleitung der kalorischen Grundgleichung . . . . . . . . .          	 112
3.4.3	 Natürliche Phänomene und ihre physikalischen  

Erklärungen  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          	 114
3.5	 Mischtemperaturen  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 	 115
3.5.1	 Mischtemperaturen bei gleichen Stoffen . . . . . . . . . . . .             	 116
3.5.2	 Mischtemperaturen bei unterschiedlichen Stoffen . .   	 118
3.5.3	 Wärmeaustausch mit Gefäßen . . . . . . . . . . . . . . . . . . . . . .                       	 119
3.6	 Latente Wärmeenergie  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              	 120
3.6.1	 Schmelzvorgang im Teilchenmodell und  

Schmelzwärme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                       	 120
3.6.2	 Erstarrungsvorgang im Teilchenmodell und  

Erstarrungswärme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 124
3.6.3	 Verdampfen und Kondensieren  . . . . . . . . . . . . . . . . . . . . .                      	 126
3.6.4	 Latente Wärmeenergie in der Natur und Praxis . . . . . .       	 128
3.7	 Wärmetransport  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 129
3.7.1	 Wärmeleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        	 129
3.7.2	 Wärmeströmung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     	 130
3.7.3	 Wärmestrahlung  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     	 132

Kapitel 4 – Optik . . . . . . . . . . . . . . . . . . . . . . . . .                         	133
4.1	 Grundlagen der Strahlenoptik . . . . . . . . . . . . . . . . . . . . . .                       	 133
4.1.1	 Grundkonzept des Sehens . . . . . . . . . . . . . . . . . . . . . . . . . . .                            	 133
4.1.2	 Ausbreitung von Lichtstrahlen  . . . . . . . . . . . . . . . . . . . . . .                       	 134
4.2	 Erklärung von Schatteneffekten . . . . . . . . . . . . . . . . . . . .                     	 135
4.3	 Himmelsphänomene  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                	 135
4.3.1	 Entstehung einer Sonnenfinsternis  . . . . . . . . . . . . . . . . . .                   	 135
4.3.2	 Entstehung einer Mondfinsternis . . . . . . . . . . . . . . . . . . . .                     	 136
4.3.3	 Ablauf der Mondphasen . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              	 136
4.4	 Reflexion des Lichtes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 	 137
4.4.1	 Regelmäßige und diffuse Reflexion . . . . . . . . . . . . . . . . . .                   	 137
4.4.2	 Ebene Spiegel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         	 138
4.4.3	 Hohlspiegel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           	 138
4.4.4	 Wölbspiegel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          	 141
4.5	 Brechung des Lichtes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                	 143
4.5.1	 Brechzahlen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          	 143
4.5.2	 Brechungsgesetz nach Snellius . . . . . . . . . . . . . . . . . . . . . . .                        	 144
4.5.3	 Optische Täuschungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               	 146
4.6	 Totale Reflexion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      	 146
4.7	 Sphärische Linsen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 149
4.7.1	 Konvexe Linsen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                       	 150
4.7.2	 Konkave Linsen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                       	 152
4.8	 Berechnungen von Abbildungen mit Linsen  . . . . . . .        	 153
4.9	 Das menschliche Auge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               	 155
4.10	 Optische Geräte  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     	 157
4.10.1	 Lichtmikroskop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                       	 157
4.10.2	Astronomische Fernrohre . . . . . . . . . . . . . . . . . . . . . . . . . . .                            	 158

Sachwortverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        	 160
Bildquellenverzeichnis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      	 161



5Einführung in die Physik

Kapitel 1 – Mechanik

1.1	 Einführung in die Physik

Die Naturwissenschaft Physik beschreibt wissen-
schaftlich mittels Theorien und Gesetzen grundle-
gende Vorgänge und Phänomene in der unbelebten 
Natur. Dabei beschränkt sich die Physik auf Vor-
gänge, bei denen keine stofflichen Umwandlungen 
stattfinden, wie es beispielsweise beim Verbrennen 
von Holz der Fall ist. Die Sprache, mit der die Physik 
die Natur beschreibt, ist die Mathematik. Erkennt-
nisse aus der Physik werden in der Technik und den 
Ingenieurswissenschaften verwendet, um Maschi-
nen, Anlagen und Apparaturen zu entwickeln. Die 
Physik wird üblicherweise in verschiedene Gebiete 
untergliedert, eine gebräuchliche Untergliederung 
zeigt Tabelle 1. Oft werden die Teilgebiete noch 
nach Klassischer Physik und Moderner Physik unter-
schieden, damit sind die Teilgebiete der Physik ge-
meint, die sich seit ca. 1900 entwickelt haben und 
einen neuen Blick auf die Natur enthalten.

Tabelle 1: Teilgebiete der Physik

Klassische Physik Moderne Physik

Mechanik Quantenmechanik

Thermodynamik Relativitätstheorie

Elektromagnetismus Festkörperphysik

Akustik Atom- und Kernphysik

Optik Astrophysik

Der physikalische Erkenntnisprozess

Ziel der Physik ist es, natürliche Prozesse und Vor-
gänge eindeutig zu beschreiben. Um ablaufende Pro-
zesse zu verstehen und anschließend mithilfe von 
Formeln und Gleichungen eindeutig zu beschreiben, 
sind gezielte Beobachtungen und Messungen not-
wendig. Natürlich kann man nicht warten, bis die 
gewünschten natürlichen Vorgänge in der freien Na-
tur von selbst ablaufen. Vielmehr ist es notwendig, 
diese künstlich nachzuahmen. Dies geschieht durch 
physikalische Experimente. Ein weiterer Vorteil von 
künstlich erzeugten Prozessen (Experimenten) be-
steht darin, dass stets die gleichen Bedingungen 
herrschen. In Bild 1 ist der Aufbau eines physikali-
schen Experiments aus dem aus 18. Jahrhundert zu 
sehen. Mithilfe dieses Experiments versuchte man, 
Erkenntnisse in der Elektrizitätslehre zu gewinnen.

Experimente

Experimente stehen bei der physikalischen Er-
kenntnisgewinnung im Mittelpunkt.

Bild 1: Experiment zur Elektrizität aus dem 18. Jahr-
hundert

Führt eine große Anzahl von Experimenten unter 
gleichen Versuchsbedingungen stets zum gleichen 
Ergebnis, dann kann man daraus schließen, dass 
auch der nächste Versuch zu diesem Ergebnis führt. 
Man folgert aufgrund der Wiederholbarkeit des Ver-
suchs, dass die Versuchsaussage (unter gewissen 
Bedingungen) allgemeingültig ist. Die allgemein-
gültigen Versuchsaussagen werden als physikalische 
Gesetze oder Naturgesetze bezeichnet. Physikali-
sche Gesetze sind durch Formeln und Gleichungen, 
also mithilfe der Mathematik, eindeutig beschrie-
ben.

Physikalische Gesetze

Physikalische Gesetze beschreiben eindeutig mit-
hilfe der Mathematik in der Natur ablaufende 
physikalische Prozesse.

Die Beschreibung eines umfassenden physikalischen 
Bereichs mit einer Vielzahl von Naturgesetzen nennt 
man Theorie. Mithilfe der Logik können häufig Er-
kenntnisse und ganze Theorien aus einem physi-
kalischen Teilbereich auf einen anderen Teilbereich 
übertragen werden. Sie müssen aber immer durch 
Experimente bestätigt werden.

Physikalische Theorie

Die Beschreibung eines größeren physikalischen 
Bereichs mittels physikalischer Gesetze wird als 
physikalische Theorie bezeichnet.



6 Mechanik

1.2	 Eigenschaften von Körpern

In der Physik werden häufig Körper und ihr Ver-
halten näher untersucht. Im physikalischen Sinne 
ist ein Körper eine Menge von räumlich begrenzter 
Materie. Dabei kann die Materie im festen, flüssi-
gen oder gasförmigen Aggregatzustand vorliegen. 
Möchte man ausdrücken, dass sich der betrachtete 
Körper im festen Aggregatzustand befindet, spricht 
man von einem Festkörper. Flüssigkeiten sind dem-
entsprechend Körper im flüssigen Zustand und 
Gase sind Körper im gasförmigen Aggregatzustand.

Physikalische Körper

In der Physik wird eine räumlich begrenzte Menge 
an Materie als Körper bezeichnet.

Körper besitzen unabhängig vom Aggregatzustand 
Eigenschaften. Im Folgenden werden zwei grundle-
gende Eigenschaften eines Körpers betrachtet, näm-
lich die Masse und die Dichte.

1.2.1	 Masse von Körpern

Jeder Körper besitzt eine bestimmte Masse. Auf-
grund seiner Masse ist jeder Körper schwer und trä-
ge. Schwer bedeutet hier, dass ein Körper in der Lage 
ist, sich oder andere Körper zu beschleunigen. Träge 
bedeutet, dass ein Körper seinen momentanen Zu-
stand nur ändert, wenn eine Kraft auf ihn wirkt. Von 
alleine macht er das nicht.
Ein Beispiel zur Verdeutlichung der Begriffe schwer 
und träge ist ein Apfel, der sich vom Ast eines Bau-
mes löst. Aufgrund seiner schweren Masse wird er 
Richtung Erdboden beschleunigt. Liegt er dort, be-
wegt er sich aufgrund seiner trägen Masse von allei-
ne nicht weiter.

Schwere und Trägheit der Masse

Jeder Körper ist wegen seiner Masse schwer und 
träge.

Rechnen mit der Masse

In physikalischen Gesetzen wird die Masse durch 
den Formelbuchstaben m beschrieben. Die Stan-
dardeinheit einer Masse sind Kilogramm (kg).  
Neben dieser Einheit sind die Einheiten Gramm (g) 
und Tonne (t) gebräuchlich.

Es gilt:

1000 g  =  1 kg;  1000 kg  =  1 t.

Bestimmung mit der Masse

Die Masse eines Körpers wird mithilfe einer Waage 
ermittelt. In Bild 1 ist eine Balkenwaage zu sehen.

m
1

m
2

Bild 1: Balkenwaage

1.2.2	 Dichte eines Körpers

Die Dichte eines Körpers gibt an, welche Masse ein 
Körper pro Volumeneinheit hat. Ihr Formelzeichen 
ist der griechische Buchstabe ϱ, als Einheit für die 

Dichte dienen ​​ 
kg

 ____ 
​dm​​ 3​

 ​​ bzw. ​​ 
g
 ____ 

​cm​​ 3​
 ​​.

Dichte eines Körpers

ϱ  = ​​ 
m

 __ 
V

 ​​

ϱ … Dichte    m … Masse    V … Volumen

Beispielaufgabe

Ein Würfel aus Stahl hat eine Kantenlänge von 
20,0 mm und eine Masse von 62,8 g (Bild 2).

Bild 2: Würfel aus Stahl

Berechnen Sie die Dichte von Stahl in ​​ 
g
 ____ 

​cm​​ 3​
 ​​.

Lösung:

ϱ  = ​​ 
m

 __ 
V

 ​​  = ​​ 
m

 ___ 
​a​​ 3​

 ​​  = ​​ 
62,8 g

 _______ 
(2 cm​)​​ 3​

 ​​  =  7,85 ​​ 
g
 ____ 

​cm​​ 3​
 ​​
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Anmerkung

Die Einheiten ​​ 
kg

 ____ 
​dm​​ 3​

 ​​ bzw. ​​ 
g
 ____ 

​cm​​ 3​
 ​​ sind gleichwertig,  

wie die folgende Rechnung zeigt:

​​ 
kg

 ____ 
​dm​​ 3​

 ​​  = ​​  
1000 g

 _________ 
1000 ​cm​​ 3​

 ​​  = ​​  
g
 ____ 

​cm​​ 3​
 ​​.

1.2.3	 Experimentelle Herleitung der 

Formel für die Dichte – direkte 

Proportionalität

Im letzten Abschnitt wurde beschrieben, dass sich 

die Dichte eines Stoffes mit der Formel ϱ  = ​​  
m

 __ 
V

 ​​ be-

rechnen lässt. In der Physik geht es jedoch primär 
nicht um das Anwenden von Formeln, sondern die 
Physik beschäftigt sich vielmehr mit der Fragestel-
lung: „Wie kommt man auf diese Formel bzw. das 
Naturgesetz?“. Daher wird anhand dieser Formel ex-
emplarisch gezeigt, wie man sie mittels eines Experi-
ments herleitet.

Ermittlung der Dichte von Stoffen

Versuchsziel

Ermittlung des physikalischen Zusammenhangs 
zwischen dem Volumen eines Körpers und seiner 
Masse.

Versuchsaufbau

Auf der linken Seite einer Balkenwaage (Bild 1) be-
findet sich ein ungefüllter Glaszylinder. Auf dem 
Glaszylinder ist eine Skala aufgedruckt, über die 
ein eingefülltes Volumen abgelesen werden kann. 
Auf der rechten Seite der Balkenwaage befinden 
sich Massestücke, und zwar so viele, dass die Bal-
kenwaage im Gleichgewicht ist.

Bild 1: Balkenwaage im Gleichgewicht

Balkenwaage

Glaszylinder

Versuchsdurchführung

Es werden zunächst 20 ml, also 0,02 dm3, feiner 
Quarzsand in den Glaszylinder gefüllt. Durch das 

Auflegen von zusätzlichen Massenstücken auf der 
rechten Seite der Balkenwaage wird die Masse der 
Sandfüllung bestimmt. Danach werden erneut 
20 ml feiner Quarzsand in den Glaszylinder gefüllt, 
und es wird die gesamte Masse der Sandfüllung er-
mittelt. Dieser Vorgang wird weitere fünf Mal mit 
je einer zusätzlichen Sandfüllung von 20 ml durch-
geführt.

Versuchsauswertung

In Tabelle 1 sind die Messwerte aufgeführt, die man 
bei einer Versuchsdurchführung erhalten hat.

Tabelle 1: Messwerte zur Dichtebestimmung

V [dm3] 0,020 0,040 0,060 0,080 0,100

m [kg] 0,029 0,062 0,089 0,122 0,150

Grafische Auswertung
Um die Messwerte grafisch auszuwerten, trägt man 
sie in ein Diagramm ein (Bild 2). Die unabhängige 
Größe – hier das Volumen – wird auf der horizonta-
len Achse und die abhängige Größe – hier die Masse 
– wird auf der senkrechten Achse angetragen.

Volumen V

0,14

0,12

0,10

0,08

0,06

0,04

0,02

0
0 0,02 0,04 0,06 0,08 0,10 0,12 0,14

M
as

se
 m

Bild 2: Grafische Darstellung der Messwerte

Man erkennt, dass die Messpunkte näherungsweise 
auf einer Ursprungshalbgeraden liegen. Dies ist ein 
Kennzeichen dafür, dass die betrachteten physika-
lischen Größen (hier m und V) direkt proportional 
zueinander sind.

Man schreibt:  m ~ V.
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Grafischer Nachweis für direkte Proportionalität

Liegen die Messwerte zweier physikalischer Grö-
ßen näherungsweise auf einer Ursprungshalbgera-
den, dann sind die beiden physikalischen Größen 
direkt proportional zueinander.

Direkte Proportionalität zwischen der Masse m und 
dem Volumen V bedeutet, dass sich
•	 die Masse verdoppelt, wenn sich das Volumen 

verdoppelt,
•	 die Masse verfünffacht, wenn sich das Volumen 

verfünffacht,
•	 die Masse halbiert, wenn sich das Volumen hal-

biert usw.

Folgerung aus der direkten Proportionalität
Da sich die Masse im gleichen Verhältnis (propor-
tional) wie das Volumen verändert, führt man einen 
Proportionalitätsfaktor ϱ ein. Aus der direkten Pro-
portionalität m ~ V ergeben sich damit die folgen-
den Gleichungen:

  m ~ V  →  m  =  ϱ  ·  V  ⇔  ϱ  = ​​ 
m

 __ 
V

 ​​

Der Proportionalitätsfaktor hat meist eine reale 
Bedeutung. Im vorliegenden Fall entspricht der 
Proportionalitätsfaktor ϱ der Dichte.

ϱ  = ​​ 
m

 __ 
V

 ​​

(1)	Der Proportionalitätsfaktor entspricht der Stei-
gung der Ursprungshalbgeraden.

(2)	Der verwendete Sand im Beispiel hat eine 
Dichte von etwa  1,5 kg  ·  dm−3.

	 ϱ  = ​​ 
m

 __ 
V

 ​​  = ​​ 
0,150 kg

 __________ 
0,100 ​dm​​ 3​

 ​​  =  1,5 ​​ 
kg

 ____ 
​dm​​ 3​

 ​​

Rechnerische Auswertung
Alternativ zur grafischen Auswertung kann auch 
rein rechnerisch nachgewiesen werden, dass zwei 
physikalische Größen direkt proportional zueinan-
der sind.

Zwei physikalische Größen sind direkt proportional 
zueinander, wenn sie quotientengleich sind. Quoti-
entengleich bedeutet, dass der Quotient der Größen 

– hier ​​ 
m

 __ 
V

 ​​ – für jedes Messpaar näherungsweise kon-

stant ist. Anhand von Tabelle 1 erkennt man, dass 
dies für die Messpaare (m I V) der Fall ist.

Tabelle 1: Messwerte mit Quotient aus Masse und  
Volumen

V [dm3] 0,020 0,040 0,060 0,080 0,100

m [kg] 0,029 0,062 0,089 0,122 0,150

​​ 
m

 __ 
V

 ​​ 1,45 1,55 1,49 1,52 1,5

Es gilt: ​​ 
m

 __ 
V

 ​​  =  konstant.

Diese Konstante entspricht dem Proportionalitäts-
faktor ϱ, der in der grafischen Auswertung erläutert 
wurde. Es kann also ebenso gefolgert werden:

ϱ  = ​​ 
m

 __ 
V

 ​​

Quotientengleichheit bei direkter Propor

tionalität

Zwei physikalische Größen, die direkt proportio-
nal zueinander sind, sind quotientengleich.

Unabhängig davon, ob die Messdaten grafisch oder 
rein rechnerisch ausgewertet werden, das Ergebnis 
ist stets das gleiche:

Der Quotient aus der Masse m und dem Volu-
men  V eines Körpers ist stets konstant. Dieser 
Quotient wird Dichte ϱ genannt. 

ϱ  = ​​ 
m

 __ 
V

 ​​

Der im Experiment verwendete Sand hat eine Dich-
te von etwa  1,5 kg  ·  dm−3.

Masse und Dichte

1.	 Ein Metallstück hat ein Volumen von 8,2 dm3 
und eine Masse von 65 kg.

a)	 Berechnen Sie die Dichte des Metallstücks 
und bestimmen Sie ggf. mithilfe des Inter-
nets, um welchen Werkstoff es sich han-
delt.

b)	 Berechnen Sie die Masse des Werkstücks, 
wenn es aus Kupfer wäre. 

​​(ϱCu  =  8,9 ​ 
kg

 ____ 
​dm​​ 3​

 ​)​​
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2.	 Während eines kalten und schneereichen Win-
ters bildet sich auf einer Garage mit einem 
Flachdach eine 35 cm hohe Schneeschicht. Das 
Flachdach hat eine Grundfläche von 55 m2. Be-
rechnen Sie die Masse der gesamten Schnee
decke auf der Garage. Gehen Sie davon aus, 

dass der Schnee eine Dichte von 100 ​​ 
kg

 ___ 
​m​​ 3​

 ​​ hat.

3.	 Ein Zylinder aus Aluminium ​​(ϱ  =  2,7 ​ 
kg

 ____ 
​dm​​ 3​

 ​)​​ 

hat eine Masse von 2300 g und ist 15 cm lang. 
Berechnen Sie den Radius des Zylinders.

1.3	 Bewegungen von Körpern

In diesem Kapitel wird die sogenannte Bewegungs-
lehre näher untersucht. Die Bewegungslehre lässt 
sich in die Bereiche Kinematik und Dynamik unter-
teilen. Die Dynamik beschäftigt sich damit, weshalb 
sich Körper bewegen bzw. weshalb Körper ihren Be-
wegungszustand ändern. Die Kinematik hingegen 
hat das Ziel, die Bewegung eines Körpers mithilfe 
von Formeln und Gleichungen eindeutig zu be-
schreiben. Die Kinematik beschreibt somit beispiels-
weise, mit welcher Geschwindigkeit sich ein Körper 
zu einem Zeitpunkt bewegt bzw. an welchem Ort 
sich ein Körper zu einem Zeitpunkt befindet.

Kinematik: Wie bewegen sich Körper?
Dynamik: Warum bewegen sich Körper?

In diesem Kapitel wird hauptsächlich die Kinematik 
behandelt. Im nächsten Kapitel wird die Dynamik 
erläutert.

1.3.1	 Bedeutung des Bezugssystems

Um die Bewegung eines Körpers eindeutig zu be-
schreiben, muss ein Bezugssystem festgelegt wer-
den. Der Nullpunkt des Bezugssystems wird wäh-
rend des kompletten Beobachtungsvorgangs nicht 
verändert. Wird beispielsweise die Bewegung eines 
Leistungsschwimmers, der vom linken zum rechten 
Beckenrand schwimmt, beobachtet, dann empfiehlt 
es sich, den linken Beckenrand als Bezugsnullpunkt 
zu wählen. Aussagen wie: „Nach 12 Sekunden war 
der Schwimmer bei 30 m“, bedeutet somit, dass der 
Schwimmer nach 12 Sekunden 30 m vom Bezugs-
nullpunkt entfernt war.

Bezugssystem

Der Nullpunkt des Bezugssystems muss vor einer 
Beobachtung eindeutig festgelegt werden.

In der Bewegungslehre werden Festkörper meist 
nicht als ausgedehnte Körper betrachtet. Vielmehr 
werden Festkörper idealisiert als sogenannte Punkt-
masse angesehen. Man nimmt also vereinfacht an, 
dass die gesamte Masse eines Körpers in dessen 
Schwerpunkt vereinigt ist. Dementsprechend stellt 
man den Körper als Punkt dar. Das ist zwar eine ver-
einfachte, aber dennoch in vielen Fällen ausreichend 
genaue Darstellung eines Körpers.

Reduzierung auf eine Punktmasse

Ausgedehnte, also dreidimensionale Körper wer-
den in der Bewegungslehre als Punktmassen be-
trachtet.

1.3.2	 Geradlinige, gleichförmige 

Bewegungen

Unter einer geradlinigen, gleichförmigen Bewegung 
eines Körpers versteht man eine gerade Bewegung 
mit konstanter Geschwindigkeit.

Gleichförmige Bewegung

Bei einer gleichförmigen Bewegung des Körpers 
ändert sich die Geschwindigkeit des Körpers 
nicht. Die Geschwindigkeit bleibt somit konstant.

In dieser Beschreibung einer gleichförmigen Bewe-
gung wird die physikalische Größe Geschwindigkeit 
benutzt. Dieser Begriff ist aus dem Alltag bekannt, 
und jeder hat eine Vorstellung, welche Bedeutung 
das Wort Geschwindigkeit umgangssprachlich hat. 
Im Folgenden wird nun erläutert, wie die physikali-
sche Größe Geschwindigkeit definiert ist.

Definition Geschwindigkeit

Um zu erläutern, was man in der Physik unter dem 
Begriff Geschwindigkeit versteht, betrachten wir das 
folgende Experiment.

Geschwindigkeit

Versuchsaufbau

Auf einer Luftkissenbahn (Bild 1 auf Seite 10) 
befindet sich ein Gleiter. Der Gleiter kann sich auf 
dem Luftkissen dieser Bahn (näherungsweise) mit 
konstanter Geschwindigkeit bewegen. Auf der 
Bahn befinden sich im Abstand von jeweils 20 cm 
Lichtschranken mit elektronischen Stoppuhren. 
Beim Passieren der ersten Lichtschranke beginnen 
alle Stoppuhren zu laufen. Wird eine weitere Licht-
schranke vom Gleiter passiert, bleibt die zugehöri-
ge Stoppuhr stehen.
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Bild 1: Luftkissenbahn von oben

elektronische Stoppuhren

Gleiter Luftkissenbahn

Lichtschranken

0 cm 100 cm80 cm60 cm40 cm20 cm

0,00 s 0,00 s 0,00 s 0,00 s 0,00 s

Versuchsdurchführung

Ein Gleiter wird durch leichtes Anstoßen mit der 
Hand in Bewegung versetzt. Beim Passieren der 
ersten Lichtschranke beginnen alle Stoppuhren 
zu laufen. Der Gleiter passiert nach und nach jede 
weitere Lichtschranke und stoppt somit alle Mess-
uhren.

Versuchsauswertung

Die Messwerte eines solchen Versuchs sind in Ta-

belle 1 zusammengestellt. Δs steht für den zurück-
gelegten Weg des Gleiters und Δt für die dafür be-
nötigte Zeit.

Tabelle 1: Messwerte zur Geschwindigkeitsbestim-
mung

Δs [m] 0,20 0,40 0,60 0,80 1,0

Δt [s] 0,27 0,53 0,82 1,10 1,36

Trägt man die Messwerte in ein sogenanntes Zeit- 
Ort-Diagramm ein, so erhält man näherungsweise 
eine Ursprungshalbgerade (Bild 2).

s

Zeit t

1,2

1,0

0,8

0,6

0,4

0,2

0
0 0,2 0,4 0,6 0,8 1,0 1,2 1,4

St
re

ck
e 
s

m

Bild 2: Zeit-Ort-Diagramm

Da sich diese Ursprungshalbgerade ergibt, kann ge-
folgert werden, dass der zurückgelegte Weg Δs und 
die dafür benötigte Zeit Δt direkt proportional sind: 
Δs  ~  Δt.
Direkt proportional bedeutet auch hier, dass der 
Quotient aus Δs und Δt konstant ist. Das dies nä-
herungsweise der Fall ist, kann man Tabelle 2 ent-
nehmen.

Tabelle 2: Rechnerische Auswertung der Messwerte

Δs [m] 0,20 0,40 0,60 0,80 1,0

Δt [s] 0,27 0,53 0,82 1,10 1,36

​​ 
Δs

 ___ 
Δt

 ​​ 0,74 0,75 0,73 0,73 0,74

Folgerung aus der direkten Proportionalität

Allgemeine Folgerung

Der Quotient ​​ 
Δs

 ___ 
Δt

 ​​ ist ein Maß dafür, wie schnell sich 

ein Körper bewegt. Man nennt diesen Quotienten 
Geschwindigkeit (Formelzeichen v).

Geschwindigkeit v
Der Quotient aus dem zurückgelegten Weg Δs 
und der dafür benötigten Zeit Δt wird Geschwin-
digkeit v genannt.

v  = ​​ 
Δs

 ___ 
Δt

 ​​

Einheit der Geschwindigkeit

Die Standardeinheit der Geschwindigkeit ist ​​ 
m

 __ 
s
 ​​. 

Eine weitere gebräuchliche Einheit der Geschwin-

digkeit ist ​​ 
km

 ___ 
h

  ​​.

Bei einer gleichförmigen Bewegung werden Weg-
abschnitte Δs mit gleicher Länge in gleichen Zeit-
abschnitten Δt zurückgelegt. Damit ist auch der 
Quotient v immer gleich. Bei einer gleichförmigen 
Bewegung ist also die Geschwindigkeit konstant.

Folgerung für dieses Experiment
Der Gleiter bewegt sich mit einer konstanten Ge-
schwindigkeit von 0,74 ms–1. Das bedeutet, dass er 
pro Sekunde 0,74 m zurücklegt.

Die Steigung der Ursprungshalbgeraden im Zeit-
Ort-Diagramm (Bild 2) entspricht der Geschwin-
digkeit des Gleiters.
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Geschwindigkeit als gerichtete Größe

In der Physik werden physikalische Größen in rich-
tungsunabhängige und richtungsabhängige Grö-
ßen unterteilt. Richtungsunabhängige Größen 
nennt man auch skalare Größen, sie sind dann ge-
geben, wenn die messbare Eigenschaft nicht von 
einer Richtung abhängt. Beispiele für skalare Größen 
sind die Masse eines Körpers oder die Temperatur.  
Beide Größen sind durch die Angabe ihres Betrags 
(Wertes) eindeutig gegeben. Beispielswiese haben 
Tomaten eine Masse von 520 g, oder Wasser hat 
eine Temperatur von 81 °C. Anders sieht es bei der 
Geschwindigkeit aus. Die Angabe der Geschwin-
digkeit ist erst dann eindeutig, wenn neben ihrem 
Betrag auch ihre Richtung genannt ist. Betrachten 
wir beispielsweise die Aussage: „Das Flugzeug fliegt 

mit einer Geschwindigkeit von 600 ​​ 
km

 ___ 
h

  ​​ in Richtung 

Osten“. Diese Aussage ist erst durch die Angabe der 
Richtung vollständig. Physikalische Größen, die nur 
durch ihren Betrag und ihre Richtung eindeutig be-
schrieben werden, werden richtungsabhängige oder 
vektorielle Größe genannt. Man kennzeichnet sie 
durch einen Pfeil über den Formelbuchstaben; wenn 
der Betrag gemeint ist, werden Betragsstriche ge-
setzt. Das Formelzeichen für die Geschwindigkeit ist 
also ​​ → v ​​; wenn man den Betrag meint, schreibt man 
|​​ → v ​​|. Man kann allerdings auch vereinbaren, dass der 
Betrag der Geschwindigkeit mit v bezeichnet wird 
(also ohne Pfeil und Betragsstriche), was in diesem 
Buch so gehandhabt werden soll. In dem oben ge-
nannten Beispiel wird somit die Geschwindigkeit 

des Flugzeugs mit v  =  600 ​​ 
km

 ___ 
h

  ​​ angegeben.

Diagramme bei der gleichförmigen Bewegung

Mithilfe von Diagrammen können Bewegungsvor-
gänge dargestellt werden. Ein wichtiges Diagramm 
in der Bewegungslehre ist das sogenannte Zeit-Ort-
Diagramm. Ein solches Diagramm haben wir bereits 
kennengelernt (Bild 1).

Es wurde ein Gleiter auf einer Luftkissenbahn be-
trachtet, der sich mit einer konstanten Geschwin-
digkeit von 0,74 ​​ m __ s ​​ bewegt. Aus dem Zeit-Ort-Dia-
gramm, das diese Bewegung beschreibt (Bild 1), 
kann man den Ort s entnehmen, an dem sich der 
Gleiter zu einer gewissen Zeit t befindet. Möch-
te man beispielsweise wissen, wo sich der Glei-
ter zum Zeitpunkt t  =  1,0 s befunden hat, kann 

s
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Bild 1: Zeit-Ort-Diagramm

man dies aus dem Diagramm ablesen und erhält 
den Ort s  =  0,73 m. Da der Ort des Gleiters von 
der gewählten Zeit t abhängig ist, schreibt man: 
s (1,0 s)  =  0,73 m. Damit ist eindeutig beschrieben, 
dass der Gleiter zum Zeitpunkt t  =  1,0 s einen Ab-
stand von 0,73 m von seinem Startpunkt (Bezugs-
nullpunkt) hatte.

Außerdem lässt sich aus dem Zeit-Ort-Diagramm 
die Geschwindigkeit des Körpers ermitteln. Die Stei-
gung der Geraden entspricht der Geschwindigkeit 
des Körpers. In unserem Beispiel beträgt die Ge-

schwindigkeit des Körpers konstant v  =  0,74 ​​ 
m

 __ 
s
 ​​.

Zeit-Ort-Diagramm

(1)	Aus dem Zeit-Ort-Diagramm lässt sich der 
Ort s entnehmen, an dem sich ein Körper zu 
einem Zeitpunkt t befunden hat.

(2)	Die Steigung der Kurve im Zeit-Ort-Diagramm 
entspricht der Geschwindigkeit des Körpers 
zum betrachteten Zeitpunkt.

Die Geschwindigkeit, mit der sich ein Körper be-
wegt, wird grafisch in einem sogenannten Zeit-
Geschwindigkeits-Diagramm dargestellt. In Bild 1 
auf Seite 12 ist das Zeit-Geschwindigkeits-Dia-
gramm der Bewegung des Gleiters auf der Luftkis-
senbahn zu sehen. Die Gerade verläuft waagrecht. 
Schließlich bewegt sich der Gleiter mit einer kons-

tanten Geschwindigkeit von v  =  0,74 ​​ 
m

 __ 
s
 ​​.
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Bild 1: Zeit-Geschwindigkeits-Diagramm

Aus dem Zeit-Geschwindigkeits-Diagramm kann 
der zurückgelegte Weg eines Körpers in einem Zeit-
intervall Δt ermittelt werden. Möchte man bei-
spielsweise wissen, welchen Weg der Gleiter zwi-
schen den Zeitpunkten t1  =  0,4 s und t2  =  0,8 s 
zurückgelegt hat, dann muss die Fläche unterhalb 
des Graphen im Zeit-Geschwindigkeits-Diagramm 
zwischen t1  =  0,4 s und t2  =  0,8 s ermittelt werden 
(Bild 2).

Ermittlung der Maßzahl der Fläche:

A  =  0,4  ·  0,74  =  0,30
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Bild 2: Ermittlung des zurückgelegten Wegs aus dem 
Zeit-Geschwindigkeits-Diagramm

Die Fläche hat eine Maßzahl von 0,30. Das bedeutet, 
dass der Gleiter zwischen t1  =  0,4 s und t2  =  0,8 s 
eine Wegstrecke von 0,30 m zurückgelegt hat.

Zeit-Geschwindigkeits-Diagramm

•	 Aus dem Zeit-Geschwindigkeits-Diagramm 
lässt sich die Geschwindigkeit v entnehmen, 
mit der sich ein Körper zu einem Zeitpunkt t 
bewegt.

•	 Die Fläche unterhalb der Kurve im Zeit-Ge-
schwindigkeits-Diagramm entspricht dem zu-
rückgelegten Weg eines Körpers in einem be-
trachteten Zeitintervall Δt.

Relativbewegung zweier gleichförmig bewegter 

Körper

Als nächstes betrachten wir nicht die Bewegung 
eines einzelnen Körpers, sondern die Bewegung von 
zwei Körpern relativ zueinander. Wir berechnen, an 
welchem Ort bzw. zu welchem Zeitpunkt sich zwei 
Körper treffen, die an unterschiedlichen Orten, zu 
unterschiedlichen Zeiten und mit unterschiedlichen 
Geschwindigkeiten starten. Betrachten wir dazu fol-
gendes Beispiel:

Relativbewegung zweier Körper

In Bild 3 sind zwei Gleiter zu sehen, die sich auf 
einer Luftkissenbahn reibungsfrei und somit mit 
konstanter Geschwindigkeit bewegen können.

Bild 3: Luftkissenbahn

Gleiter 1

0 cm 100 cm

Luftkissenbahn

Gleiter 2

Der Gleiter 1 bewegt sich mit einer konstanten Ge-
schwindigkeit von v1  =  0,80  ​​ m __ s ​​ nach rechts. Im 

Abstand von 1,0 m befindet sich ein zweiter Glei-
ter (Gleiter 2). Dieser Gleiter 2 startet seine Bewe-
gung 0,50 s nach Gleiter 1 und bewegt sich dann 
mit einer Geschwindigkeit von v2  =  0,60 ​​ m __ s ​​ nach 

links.

a)	 Stellen Sie die Bewegungen der beiden Gleiter 
in einem gemeinsamen Zeit-Ort-Diagramm dar. 
Ermitteln Sie aus diesem Diagramm den Ort 
und den Zeitpunkt, an denen sich die beiden 
Gleiter treffen.

b)	Berechnen Sie den exakten Zeitpunkt tT , an 
dem sich die beiden Gleiter treffen.
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c)	 Berechnen Sie den exakten Ort sT , an dem sich 
die beiden Gleiter treffen.

Lösung:

a)	 Bevor die Bewegungen grafisch dargestellt wer-
den können, wird der Bezugsnullpunkt für Ort 
und Zeit festgelegt:

Bezugsnullpunkt für die Zeit:
t0  =  0,0 s ist der Startzeitpunkt des Gleiters 1.

Bezugsnullpunkt für den Ort:
s0  =  0,0 m ist der Startpunkt des Gleiters 1.

Die Bewegung des Gleiters 1 lässt sich durch 
eine steigende Ursprungshalbgerade mit der 
Steigung 0,8 darstellen (Bild 1).

Die Bewegung des Gleiters 2 beginnt 0,50 s 
nach dem Start von Gleiter 1, also zum Zeit-
punkt t2  =  0,50 s. Da sich der Gleiter 2 mit ei-

ner konstanten Geschwindigkeit von 0,6 ​​ m __ s ​​ auf  
Gleiter  1 zubewegt, wird die Bewegung von 
Gleiter  2 durch eine fallende Gerade mit der 
Steigung –0,6 im Zeit-Ort-Diagramm darge-
stellt (Bild 1).

Bild 1: Gemeinsamens Zeit-Ort-Diagramm
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Aus diesem Diagramm kann grafisch entnom-
men werden, dass sich die beiden Gleiter etwa 
zum Zeitpunkt t  =  0,92 s am Ort s  =  0,74 m 
treffen. Da diese beiden Werte zeichnerisch er-
mittelt wurden, sind sie relativ ungenau. Es lie-
gen Zeichen- und Ableseungenauigkeiten vor.

b)	Um den Zeitpunkt, an dem sich die beiden 
Gleiter treffen, exakt zu berechnen, müssen die 
Bewegungen der beiden Gleiter mathematisch 
beschrieben werden.

Bewegung des Gleiters 1
Die Gerade, die die Bewegung des Gleiters 1  
beschreibt, ist eine Ursprungshalbgerade mit 
der Steigung  v1  =  0,80 ​​ m __ s ​​.

s1(t)  =  0,80 ​​ m __ s ​​  ·  t

s1 gibt den Ort des Gleiters 1 zum Zeitpunkt t 
an.

Bewegung des Gleiters 2
Die Gerade, die die Bewegung des Gleiters 2  
beschreibt, ist eine um 0,50 nach rechts und 
um 1,0 nach oben verschobene Gerade mit der 
Steigung v2  =  −0,60 ​​ m __ s ​​.

s2(t)  =  −0,60 ​​ m __ s ​​  ·  (t  −  0,50 s)  +  1,0 m

s2 gibt den Ort des Gleiters 2 zum Zeitpunkt t 
an.

Berechnung der Schnittstelle
Um den Zeitpunkt zu ermitteln, an dem sich 
der Gleiter 1 und der Gleiter 2 am gleichen Ort 
befinden, müssen die Funktionsterme s1(t) und 
s2(t) gleichgesetzt werden:

        s1(t)  =  s2(t)

     0,80 ​​ m __ s ​​  ·  t  =  −0,60 ​​ m __ s ​​ · (t − 0,50 s) + 1,0 m

⇔   0,80 ​​ m __ s ​​  ·  t  =  −0,60 ​​ m __ s ​​  ∙  t  +  1,3 m

⇔     1,4 ​​ m __ s ​​  ·  t  =  1,3 m

⇔         tT  =  0,93 s

Zum Zeitpunkt tT  =  0,93 s treffen sich die bei-
den Gleiter.

c)	 Um zu berechnen, an welchem Ort sich die 
beiden Gleiter treffen, wird der Zeitpunkt 
tT  =  0,93 s in einen der beiden Terme s1(t) oder 
s2(t) eingesetzt:

s1(0,93 s)  =  0,80 ​​ m __ s ​​  ·  0,93 s  =  0,74 m

bzw.

s2(0,93 s)
  =  −0,60 ​​ m __ s ​​  ·  (0,93 s  −  0,50 s)  +  1,0 m

  =  0,74 m

Die beiden Gleiter treffen sich am Ort 0,74 m, 
also 0,74 m vom Startpunkt des Gleiters 1 ent-
fernt.



14 Mechanik

Beschreibung einer gleichförmigen Bewegung, 

die zeitlich und örtlich versetzt beginnt

Eine gleichförmige Bewegung, die zum Zeitpunkt 
tA und am Ort sA beginnt, (wobei tA und sA nicht 
die Bezugsnullpunkte der Zeit und des Orts sind) 
lässt sich durch die folgende Gleichung beschrei-
ben:
  s (t)  =  sA  +  v  ·  (t  −  tA)

Gleichförmige Bewegung

1.	 Die Oberfläche eines 1500 mm langen Werk-
stücks soll gefräst werden. Der An- und Über-
lauf betragen jeweils lA  =  lÜ  =  60 mm. Es 
wird mit einer Vorschubgeschwindigkeit von 

v  =  300 ​​ 
mm

 ____ 
min

 ​​ gefräst.

a)	 Berechnen Sie die benötigte Fräszeit für 
diesen Arbeitsschritt.

b)	 Berechnen Sie die nötige Vorschub
geschwindigkeit, wenn der Fräsvorgang 
(inkl. An- und Überlauf) insgesamt 5 Minu-
ten dauern soll.

2.	 Ein Werkstück wird zum Zeitpunkt t0  =  0  s 
mithilfe eines Greifers auf ein kontinuierlich 
laufendes Förderband gestellt. Aus prozess-
technischen Gründen muss das Werkstück in 
4,85 s genau 11,7 m befördert werden.

a)	 Berechnen Sie die Geschwindigkeit, mit der 
das Förderband betrieben werden muss.

b)	 Erstellen Sie ein Zeit-Ort-Diagramm und 
ein Zeit-Geschwindigkeits-Diagramm für 
die Bewegung des Werkstücks auf dem 
Förderband.

3.	 Ein Radfahrer startet in seinem Heimatort 
Adorf und fährt mit einer konstanten Ge-
schwindigkeit von vA  =  12 ​​ m __ s ​​ in Richtung des 

Nachbarorts Bort. Die beiden Ortsschilder sind 
genau 4,2 km voneinander entfernt. Genau 
zu dem Zeitpunkt, an dem der Radfahrer das 
Ortsschilds von Adorf passiert, passiert eine 
Rollerfahrerin das Ortsschild von Bort und 
fährt mit einer konstanten Geschwindigkeit 
von vB  =  12 ​​ m __ s ​​ dem Radfahrer entgegen. Be-

rechnen Sie den Ort und den Zeitpunkt, an de-
nen sich Radfahrer und Rollerfahrerin treffen.

1.3.3	 Geradlinige, gleichmäßig 

beschleunigte Bewegungen

Bisher wurden gleichförmige Bewegungen betrach-
tet, also Bewegungen mit konstanter Geschwindig-
keit. In diesem Kapitel werden nun gleichmäßig be-
schleunigte Bewegungen untersucht. Bei dieser Art 
von Bewegungen werden die betrachteten Körper 
beschleunigt, und zwar so, dass sich ihre Geschwin-
digkeit gleichmäßig erhöht bzw. gleichmäßig verrin-
gert.

Experimentelle Untersuchung einer gleichmäßig 

beschleunigten Bewegung

Um zu verdeutlichen, was eine gleichmäßig be-
schleunigte Bewegung auszeichnet und was man 
unter dem Begriff Beschleunigung versteht, betrach-
ten wir folgendes Experiment.

Experiment zur gleichmäßig beschleunigten 

Bewegung

Versuchsaufbau

Eine Luftkissenbahn ist bezüglich der Horizontalen 
geneigt (Bild 1). Aufgrund dieser Neigung wird ein 
Gleiter, der sich auf dieser Luftkissenbahn abwärts 
bewegt, beschleunigt.
Auf der Bahn sind im Abstand von jeweils 20 cm 
Lichtschranken angebracht, die mit elektronischen 
Stoppuhren verbunden sind. Mit dem Start des 
Gleiters beginnen alle Stoppuhren zu laufen. Pas-
siert der Gleiter die Lichtschranken, stoppen die 
zugehörigen Uhren.

Bild 1: Geneigte Luftkissenbahn

Gleiter

t = 0
v = 0
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40

60

80

100
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Versuchsdurchführung

Es wird ein Gleiter mit dem vorderen Ende an die 
Startmarkierung gesetzt und losgelassen. Durch 
die Neigung der Luftkissenbahn wird der Gleiter in 
Bewegung versetzt. Damit beginnen alle elektroni-
schen Stoppuhren zu laufen. Der Gleiter passiert 
nach und nach die einzelnen Lichtschranken, die 
dabei stoppen. Die Messung endet, wenn der Glei-
ter die letzte Lichtschranke durchquert hat.

Versuchsauswertung

Die Messwerte sind in Tabelle 1 zusammengestellt. 
Δs steht für den zurückgelegten Weg des Gleiters 
und Δt für die dafür benötigte Zeit.

Tabelle 1: Messwerte zur gleichmäßig beschleunigten 
Bewegung

0 1 2 3 4

Δs [m] 0 0,20 0,40 0,60 0,80

Δt [s] 0 1,88 2,63 3,25 3,78

5 6

Δs [m] 1,0 1,2

Δt [s] 4,21 2,63

Trägt man die Messwerte in ein Zeit-Ort-Diagramm 
ein, so erhält man einen Parabelast (Bild 1).
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Bild 1: Zeit-Ort-Diagramm

Dem Zeit-Ort-Diagramm kann entnommen werden, 
dass der Gleiter im gleichen Zeitintervall ∆t  =  1,0 s 
eine umso längere Wegstrecke zurückgelegt hat, je 

länger die Bewegung dauert (Bild 2). Wenn im glei-
chen Zeitintervall eine größere Wegstrecke zurück-
gelegt wird, dann nimmt die Geschwindigkeit des 
Gleiters zu. Die Änderung einer Geschwindigkeit 
wird in der Physik als Beschleunigung bezeichnet.
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Bild 2: Zunahme der zurückgelegten Wegstrecke pro 
Sekunde

Folgerung 1 aus dem Experiment

Bei einer beschleunigten Bewegung nimmt die 
Geschwindigkeit eines Körpers und somit die pro 
Zeitintervall zurückgelegte Wegstrecke des Kör-
pers zu.

Durchschnitts- und Momentangeschwindigkeit

Aus dem Zeit-Ort-Diagramm kann nicht nur quali-
tativ gefolgert werden, dass die Geschwindigkeit des 
Gleiters zunimmt, sondern man kann die Geschwin-
digkeit und die Geschwindigkeitszunahme des Glei-
ters auch quantitativ ermitteln.
Da sich die Geschwindigkeit mit der Zeit ändert, 
muss man bei einer beschleunigten Bewegung zwi-
schen der Durchschnittsgeschwindigkeit in einem 
Zeitintervall Δt und der Momentangeschwindigkeit 
zu einem bestimmten Zeitpunkt t unterscheiden.

Die Durchschnittsgeschwindigkeit des Gleiters 
zwischen zwei Zeitpunkten t1 und t2 wird mithil-
fe einer Geraden (Sekante) ermittelt. Die Steigung 
der Sekante entspricht der durchschnittlichen Ge-
schwindigkeit des Gleiters im untersuchten Zeitin-
tervall. Betrachten wir beispielsweise die Zeitpunk-
te t1  =  1,0 s und t2  =  4,0 s sowie die zugehörigen 
Orte s1(1,0 s)  =  0,055 m und s2(4,0 s)  =  0,90 m. 
Die Gerade durch diese Messpunkte ist in Bild 1 auf 
Seite 16 zu sehen.



16 Mechanik

s

Zeit t

1,2

1,0

0,8

0,6

0,4

0 1 2 3 4 5

St
re

ck
e 
s

m

0,2

0

∆S

∆t

Bild 1: Sekante an den Stellen t1 = 1,0 und t2 = 4,0 s

Die Steigung der Sekante und somit die Durch-
schnittsgeschwindigkeit ​​ 

_
 v ​​ des Gleiters zwischen 

t1 = 1,0 s und t2 = 4,0 s beträgt 0,28 ​​ 
m

 __ 
s
 ​​, wie man fol-

gender Rechnung entnehmen kann:

ms  = ​​ 
Δs

 ___ 
Δt

 ​​  = ​​ 
0,90 m  −  0,055 m

  _______________  
4,0 s  −  1,0 s

 ​​   =  0,28 ​​ 
m

 __ 
s
 ​​

→ ​​ 
_
 v ​​  =  0,28 ​​ 

m
 __ 

s
 ​​

Folgerung 2 aus dem Experiment

Die Steigung der Sekante durch zwei Kurven-
punkte im Zeit-Ort-Diagramm entspricht der 
Durchschnittsgeschwindigkeit ​​ 

_
 v ​​ (mittlere Ge-

schwindigkeit) im betrachteten Zeitintervall Δt.

Wählt man das betrachtete Zeitintervall Δt sehr 
klein, dann nähert sich die Durchschnittsgeschwin-
digkeit der tatsächlichen Geschwindigkeit (Momen-
tangeschwindigkeit) des Gleiters an. Macht man ge-
danklich das Zeitintervall Δt unendlich klein, dann 
wird aus der Sekante eine Tangente (Bild 2). Die 
Steigung der Tangente entspricht dann der tatsäch-
lichen Momentangeschwindigkeit des Gleiters.

Folgerung 3 aus dem Experiment

Die Steigung der Tangente an einem Kurvenpunkt 
im Zeit-Ort-Diagramm entspricht der Momentan
geschwindigkeit (tatsächlichen Geschwindigkeit) 
des Körpers zum betrachteten Zeitpunkt t.

s

Zeit t

1,2

1,0

0,8

0,6

0,4

0 1 2 3 4 5

St
re

ck
e 
s

m

0,2

0

Bild 2: Tangente an der Stelle t = 1,0 s

(1)	Wie man die Steigung einer Tangente an einem 
Graphen berechnet, ist Lehrstoff des nächsten 
Schuljahres. Daher wird an dieser Stelle auf die 
Berechnung der Steigung der Tangente und der 
Momentangeschwindigkeit verzichtet.

(2)	Bei der gleichförmigen Bewegung ist eine 
Unterscheidung von Durchschnittsgeschwin-
digkeit und Momentangeschwindigkeit nicht 
zwingend notwendig, da die Geschwindig-
keit konstant ist. Somit sind in diesem Fall 
die Durchschnittsgeschwindigkeit und die 
Momentangeschwindigkeit gleich.

Gleichmäßig beschleunigte Bewegung

Gegeben sind die Messreihen zweier Versuche zu 
Bewegungsvorgängen.

Versuch 1:

t [s] 0 0,5 1 1,5 2 2,5 3 3,5

s [m] 0 5,9 12,1 17,8 23,9 29,1 36,0 42,1

Versuch 2:

t [s] 0 0,5 1 1,5 2 2,5 3 3,5

s [m] 0 0,63 2,50 5,60 9,90 15,65 22,49 30,62

a)	 Zeichnen Sie für beide Versuche ein Zeit-Weg-
Diagramm.
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b)	 Begründen Sie, weshalb es sich beim ersten 
Versuch um eine gleichförmige Bewegung han-
delt, während es sich beim zweiten Versuch 
um eine gleichmäßig beschleunigte Bewegung 
handelt.

c)	 Bestimmen Sie rechnerisch die mittlere Ge-
schwindigkeit des Bewegungsvorgangs von 
Versuch 2 zwischen t1 = 0,5 s und t2 = 2,5 s. 
Überprüfen Sie Ihr Ergebnis grafisch.

d)	 Ermitteln Sie grafisch die tatsächliche Ge-
schwindigkeit des Körpers bei Versuch 2 zum 
Zeitpunkt t = 2,0 s.

1.4	 Kräfte an Körpern

Eine der wichtigsten physikalischen Größe für das 
alltägliche Leben ist die Kraft, da auf alle Personen 
und Gegenstände stets Kräfte wirken. Ohne Kräfte 
sähe unser Alltag sehr anders aus. Läuft man bei-
spielsweise auf einer Baustelle über ein Brett, dann 
biegt sich dieses Brett mehr oder weniger stark 
durch (Bild 1). Augenscheinlich übt man eine 
Kraft auf das Brett aus, die zur Folge hat, dass sich 
das Brett verformt. 2013 brach in Bangladesch eine 
Textilfabrik, also ein ganzes Gebäude, scheinbar 
ohne Grund in sich zusammen. Offensichtlich müs-
sen die tragenden Elemente eines Bauwerks Kräfte 
aufnehmen. Sind die Kräfte zu groß oder die tragen-
den Elemente geschwächt, treten ungewollte Schä-
den am Bauwerk auf.

Brett

Bild 1: Durchgebogenes Brett

In diesem Kapitel werden Kräfte näher untersucht. 
Insbesondere wird die Wirkung von Kräften auf Kör-
per beschrieben.

1.4.1	 Wirkung von Kräften auf 

Körpern

Eine Kraft an sich ist nicht sichtbar. Vielmehr kann 
die Existenz von Kräften lediglich an ihrer Wirkung 

erkannt werden. Man unterscheidet zwischen der 
statischen und dynamischen Wirkung von Kräften:

1.	 Statische Wirkung

Wirkt eine Kraft auf einen nicht beweglichen 
Körper, dann ändert die Kraft die Form und Ge-
stalt dieses Körpers. Eine Kraft kann also Körper 
verformen.

2.	 Dynamische Wirkung

Wirkt eine Kraft auf einen beweglichen Kör-
per, dann ändert sich der Betrag und/oder die 
Richtung der Geschwindigkeit des Körpers. Eine 
Kraft kann damit einen Körper beschleunigen.

In der Realität können die beiden Wirkungen von 
Kräften nicht strikt getrennt werden. Häufig treten 
sie gemeinsam auf. Betrachtet man beispielsweise 
einen Auffahrunfall. Die dabei wirkenden Kräfte ver-
ursachen eine Verformung der beiden Fahrzeuge. 
Außerdem werden die beteiligten Fahrzeuge bzw. 
ihre Insassen durch die wirkenden Kräfte positiv 
oder negativ beschleunigt (negativ beschleunigt be-
deutet abgebremst), was häufig zu einem Schleuder-
trauma führt.

1.4.2	 Die Gewichtskraft

Die Wirkung der Gewichtskraft ist allgemein be-
kannt. Sie ist verantwortlich dafür, dass alle Körper 
auf der Erde Richtung Erdmittelpunkt beschleunigt 
werden. Die Gewichtskraft ist somit ein Maß dafür, 
wie stark Körper in Richtung des Erdmittelpunktes 
gezogen werden. Aus dem Alltag ist bekannt, dass 
die Gewichtskraft eines Körpers von dessen Masse 
abhängig ist. So erfordert es mehr Kraft, um eine 
Hantel mit der Masse m = 17 kg anzuheben als eine 
Hantel mit der Masse m = 11 kg.

Gewichtskraft eines Körpers

Die Gewichtskraft gibt an, wie stark ein Körper 
in Richtung Erdmittelpunkt gezogen wird. Die 
Gewichtskraft ist von der Masse des Körpers ab
hängig.

Masse und Gewichtskraft

Im folgenden Experiment wird der Zusammenhang 
zwischen der Masse eines Körpers und seiner Ge-
wichtskraft ermittelt.
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Experiment zur Gewichtskraft

Mithilfe einer Federwaage (Bild 1) wird die Ge-
wichtskraft von Metallplatten ermittelt, die eine 
Masse von 0,10 kg, 0,20 kg, 0,30 kg, 0,35 kg und 
0,40 kg haben.

Bild 1: Federwaage

30 N

10 N

Versuchsauswertung

Die gemessenen Gewichtskräfte der Metallplatten 
und die zugehörigen Massen sind der Tabelle 1 zu 
entnehmen.

Tabelle 1: Messwerte zur Gewichtskraft

0 1 2 3 4

m [kg] 0,10 0,20 0,30 0,35 0,40

FG [N] 0,98 2,0 2,9 3,4 3,9

Trägt man die Messwerte in ein Diagramm ein (Bild 2),  
so erkennt man, dass die einzelnen Messpunkte 
näherungsweise auf einer Ursprungshalbgeraden 
liegen.
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Bild 2: Grafische Darstellung der Messpunkte

Da die Messpunkte auf einer Ursprungshalbgeraden 
liegen, folgt: Die Gewichtskraft FG und die Masse m 
sind direkt proportional zueinander.

FG  ~  m

→ ​​  
​F​ G​​

 __ 
m

 ​​  =  k  ∧  k  =  konst.

→  FG  =  m  ·  k  ∧  k  =  konst.

Die Proportionalitätskonstante k wird in diesem Fall 
als Ortsfaktor oder Fallbeschleunigung bezeichnet 
und mit g abgekürzt.

Masse, Gewichtskraft und Ortsfaktor

Die Gewichtskraft FG eines Körpers mit der 
Masse m lässt sich mit der folgenden Formel be-
rechnen:
FG  =  m  ·  g

Der Ortsfaktor im vorliegenden Experiment beträgt 

9,8 ​​ 
N

 __ 
kg

 ​​, wie aus der Tabelle 2 und der anschließen-

den Rechnung zu entnehmen ist.

Tabelle 2: Auswertung der Messwerte

0 1 2 3 4

m [kg] 0,10 0,20 0,30 0,35 0,40

FG [N] 0,98 2,0 2,9 3,4 3,9

g ​​[​ 
N

 __ 
kg

 ​]​​ 9,8 10 9,7 9,7 9,8

Der Durchschnittswert für g in diesem Versuch be-
trägt:

​​ 
_
 g ​​  = ​​ 

9,8  +  10  +  9,7  +  9,7  +  9,8
   _______________________  

5
 ​​   · ​​ 

N
 __ 

kg
 ​​  =  9,8 ​​ 

N
 __ 

kg
 ​​

(1)	Die Größe des Ortsfaktors g ist von Ort zu Ort 
unterschiedlich. In Mitteleuropa beträgt g nä-

herungsweise g  =  9,81 ​​ 
N

 __ 
kg

 ​​. Am Äquator gilt für 

g etwa g  =  9,78 ​​ 
N

 __ 
kg

 ​​.

(2)	Die Standardeinheit einer Kraft ist Newton (N). 

1 N ist das gleiche wie 1 kg  · ​​  
m

 __ 
​s​​ 2​

 ​​. Somit ist es 

möglich, durch Umrechnung der Einheiten den 

Ortsfaktor g auch in der Einheit ​​ 
m

 __ 
​s​​ 2​

 ​​ anzugeben.

	 1 N  =  1 ​​ 
kg  ·  m

 ______ 
​s​​ 2​

  ​​    1 ​​ 
N

 __ 
kg

 ​​  =  1 ​​ 
m

 __ 
​s​​ 2​

 ​​



19Kräfte an Körpern

Unterschied zwischen Masse und Gewichtskraft

Wir haben bereits festgestellt, dass die Gewichts-
kraft und die Masse unterschiedliche physikalische 
Größen sind. In Tabelle 1 sind die wesentlichen Un-
terschiede nochmals zusammengefasst.

Tabelle 1: Unterschiede zwischen Masse und Ge-
wichtskraft

Masse Gewichtskraft

Die Masse eines Körpers 
ist unabhängig vom Ort 
stets gleich.

Die Gewichtskraft eines 
Körpers ist von Ort zu 
Ort unterschiedlich.

Die Ermittlung der Grö-
ße einer Masse erfolgt 
durch Vergleich mit 
Massen, deren Größe be-
kannt ist, beispielsweise 
mit einer Balkenwaage.

Die Ermittlung der 
Größe des Betrags einer 
Gewichtskraft erfolgt 
durch Kraftmessung, 
beispielsweise mit einer 
Federwaage.

[m]  =  1 kg [FG ]  =  1 N

Gewichtskraft

1.	 Ein Goldbarren besitzt eine Masse von 
m = 200 g. Berechnen Sie die Gewichtskraft des 
Barrens in Mitteleuropa und am Äquator.

2.	 Das Mondfahrzeug der Apollo-15-Mission hat 
eine Masse von 210 kg. Der Ortsfaktor g auf 

dem Mond beträgt etwa ​​ 
1

 __ 
6

 ​​ des Ortsfaktors in 

Europa. Berechnen Sie die Gewichtskraft des 
Mondfahrzeugs auf dem Mond.

3.	 Ein ungefülltes Aquarium hat eine Masse von 
80 kg. Berechnen Sie, wie viel Liter Wasser in 
das Aquarium gefüllt werden können, wenn 
das mit Wasser gefüllte Aquarium maximal 
eine Gewichtskraft von 2,0 kN haben soll. 

Rechnen Sie mit dem Ortsfaktor g  =  9,81 ​​ 
N

 __ 
kg

 ​​.

4.	 Bei Aufräumarbeiten findet die Familie Thüler 
eine Rolle aufgewickelten Kupferdrahts mit 
einem Durchmesser von 2,0 mm. Der aufge-
wickelte Kupferdraht hat eine Gewichtskraft 
von FG  =  0,90 N. Berechnen Sie die Länge des 
Kupferdrahts, ohne ihn abwickeln zu müssen. 

Rechnen Sie mit einem Ortsfaktor g  =  9,81 ​​ 
N

 __ 
kg

 ​​,  

die Dichte von Kupfer ist ϱCu  =  8,9 ​​ 
kg

 ____ 
​dm​​ 

3
​
 ​​.

1.4.3	 Die Kraft als gerichtete Größe

Damit das Wirken einer Kraft eindeutig beschrieben 
werden kann, ist es nicht ausreichend, nur die Grö-
ße der Kraft zu nennen. Vielmehr ist es notwendig, 
zusätzlich die Richtung anzugeben, in der die Kraft 
wirkt. Kräfte gehören somit zu den gerichteten 
(vektoriellen) Größen, also zu den physikalischen 
Größen, die durch die Angabe ihrer Größe und ihre 
Wirkrichtung beschrieben werden.

Kraft als gerichtete Größe

Zur Angabe einer Kraft sind ihre Größe und ihre 
Wirkrichtung notwendig.

Die Kraft ist eine gerichtete (vektorielle) Größe. 
Aus diesem Grund schreibt man über den Formel-
buchstaben F einen Vektorpfeil (​​ 

→
 F ​​) und Betrags-

striche |​​ 
→
 F ​​|, wenn die Größe der Kraft betrachtet 

werden soll. Auf diese beiden formal korrekten 
Schreibweisen soll hier verzichtet werden. Viel-
mehr wird an dieser Stelle vereinbart, dass mit der 
Kraft F stets die Größe der Kraft F gemeint ist.

Darstellung von Kräften

Kräfte werden grafisch meist als Pfeile dargestellt. 
Dabei entspricht die Länge des Pfeils der Größe der 
Kräfte, die man häufig auch den Betrag der Kraft 
nennt. Die Richtung des Pfeils entspricht der Wirk
richtung der Kraft. In Bild 1 ist eine Kraft zu sehen, 
die unter einen Winkel von 45° auf einen Körper 
wirkt und deren Betrag 300 N ist. In der Zeichnung 
wird der Maßstab 1 cm  ≙  100 N verwendet. Somit 
ist die Länge des Kraftpfeils hier 3 cm.

S

Wirklinie

45°

F = 300 N

1 cm  = 100 N

Bild 1: Darstellung einer Kraft als Pfeil
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Grafische Darstellung von Kräften

Kräfte werden als Pfeile graphisch dargestellt.
Die Pfeillänge gibt den Betrag der Kraft an.
Die Pfeilrichtung gibt die Wirkrichtung der Kraft 
an.

Wenn nur die Kraft F und ansonsten keine weitere 
Kraft auf den Körper wirkt, dann bewegt sich der 
Schwerpunkt des Körpers entlang der Wirklinie 
nach rechts oben.

Zerlegung von Kräften

Um die Wirkung von Kräften auf Körper detaillier-
ter beschreiben zu können, werden schräg wirkende 
Kräfte F häufig in eine vertikal wirkende und eine 
horizontal wirkende Kraft zerlegt (Bild 1).

F

Fy

Fx

α

Bild 1: Zerlegung einer Kraft

Die horizontal wirkende Kraft wird häufig mit Fx be-
zeichnet. Sie verursacht eine horizontale Verschie-
bung des Körpers. Die vertikal wirkende Kraft wird 
Fy abgekürzt. Sie verschiebt den Körper vertikal. 
Beide Kräfte Fx und Fy haben zusammen die gleiche 
Wirkung auf den Körper wie die Kraft F. Die Kräfte Fx 
und Fy werden in der Technik häufig als Kraftkompo-
nenten der Kraft F bezeichnet.

Zerlegung von Kräften

Eine Kraft F kann in zwei unterschiedlich orien-
tierte Teilkräfte zerlegt werden. Zusammen haben 
die Teilkräfte die gleiche Wirkung auf den Körper 
wie die Kraft F.

Kräfte können sowohl zeichnerisch als auch rech-
nerisch in Teilkräfte zerlegt werden. Wie dabei vor-
zugehen ist, wird in den folgenden Abschnitten 

erläutert. Zuerst wird beschrieben, wie man zeich-
nerisch eine Kraft in Teilkräfte aufteilt. Anschließend 
wird auf die rechnerische Variante eingegangen.

Zeichnerische Zerlegung von Kräften

In Tabelle 1 ist eine systematische Vorgehensweise 
beschrieben, mit der eine vorgegebene Kraft F in 
zwei Teilkräfte zerlegt wird, die beliebig orientiert 
sein können.

Tabelle 1: Anleitung zum zeichnerischen Zerlegen  
einer Kraft in Teilkräfte

Schritt Anweisung

1. Antragen der beiden vorgegebenen Wirk-
linien durch den Fußpunkt des gegebe
nen Kraftpfeils.

2. Die beiden Wirklinien parallel durch die 
Spitze des Kraftpfeils verschieben. Dabei 
entsteht ein Parallelogramm.

3. Die Seiten des Parallelogramms entspre-
chen den gesuchten Teilkräften.

4. Über die Länge der einzelnen Kraftpfeile 
kann mithilfe des Dreisatzes auf die Be-
träge (Stärke) der Teilkräfte geschlossen 
werden.

In der folgenden Beispielaufgabe wird eine Kraft 
gemäß dieser Anleitung zerlegt.

Gegeben ist eine Kraft F = 50 N, die unter einem 
Winkel von � = 30° zur Horizontalen wirkt (Bild 2).

Bild 2: Gegebener Kraftpfeil

30°

F

Horizontale

Zerlegen Sie diese Kraft F in zwei Teilkräfte F1 und 
F2, deren Wirklinien um �1  =  10° und �2  =  110° 
zur Horizontalen geneigt sind.

Lösung:

① Gemäß Anleitung zur Kraftzerlegung aus Tabelle 1  
werden zwei Linien im Winkel von 10° und 110° 
bezüglich der Horizontalen durch den Fußpunkt 
des Kraftpfeils gezeichnet (Bild 1 auf Seite 21).
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