IN DIESEM KAPITEL

Was sind Algorithmen?

Wie man Algorithmen klar formuliert

Der Pseudocode

Die Korrektheit von Algorithmen

Kapitel 1
Algorithmen

nutzen, um unser Leben in ihren Griff zu bekommen, sind in aller Munde. Gemeint

sind natiirlich Algorithmen zur Analyse der Daten, die jeder bei seinem Gang durchs
Leben produziert. Man mag davon halten, was man will, ein Gutes hat die Sache: Jeder hat
den Begrift Algorithmus schon einmal gehért. Doch was genau ist ein Algorithmus?

D ie »bedrohliche Macht der Algorithmen« und die »finsteren Datenkraken, die sie

Das sind Algorithmen

Algorithmen sind Verfahren, mit denen ein Problem gel6st oder eine Aufgabe erfiillt wird.
Ein Verfahren braucht jemanden, der es ausfithrt. Dieser Jemand kann vielleicht nur ein
einziges Verfahren, dann ist es eine spezialisierte Maschine. Papas alte Quarzuhr aus den
Achtzigern kann zum Beispiel nichts weiter als die Zeit anzeigen und lésst sich auch nicht
umprogrammieren. Die geniale Idee der Informatik sind aber die allgemeinen Maschinen,
die Computer, die Beschreibungen beliebiger Verfahren akzeptieren und ausfiithren konnen.

Die Verfahren fiir Computer werden als Programme verfasst. Warum reden wir also noch
von Algorithmen und nicht gleich von Programmen? Nun, weil Programme und Algorith-
men nicht das Gleiche sind. Algorithmen sind der wesentliche Kern, der Gedanke, der durch
vollig verschiedene Programme ausgedriickt werden kann. Programme werden in Program-
miersprachen aufgeschrieben, Algorithmen meist in Pseudocode. Pseudocode ist nicht noch
eine Programmiersprache. Es ist eine Notation fiir Algorithmen, also eine spezielle Schreib-
weise, mit der sich Menschen besser iiber den Ablauf eines Verfahrens austauschen kénnen.
Pseudocode ist eine einfache und doch klare Methode, Algorithmen aufzuschreiben, die
unabhingig von den Moden der Programmiersprachen auch noch in 20 Jahren aktuell und
lesbar sein wird wie heute.

26 TEIL| Grundbegriffe

In diesem Abschnitt beschiftigen wir uns darum mit folgenden Themen etwas genauer:
¢/ Was genau versteht man unter einem Algorithmus?
¢/ In welchem Verhiltnis stehen
¢ Programme und Algorithmen sowie
¢ Funktionen und Algorithmen?
v/ Was ist Pseudocode und warum wird er verwendet?

¢/ Warum spielt die mathematische Modellierung eine wichtige Rolle bei der Formulie-
rung von Algorithmen?

Algorithmen l6sen Probleme

Backrezepte sind Algorithmen. Natiirlich werden dabei keine Daten verarbeitet, sondern
Backzutaten. Auch wenn man bei einem Algorithmus heute an Daten denkt, so ist doch der
Begrift Algorithmus etwas allgemeiner definiert.

Ein Algorithmus ist ein

v/ wohldefiniertes,

¢/ endlich beschreibbares,
v/ schrittweises

v/ Verfahren zum Losen eines Problems oder der Erfiillung einer Aufgabe.

Bei einem Algorithmus geht es darum, dass nur Dinge formuliert werden, die wirklich mach-
bar sind und keinerlei »magische Aktionen« erfordern. Beispielsweise ist folgendes Verfah-
ren kein Algorithmus:

1. Hole einen Lottoschein.

2. Mache eine Zeitreise in die ndchste Woche und beobachte, welche Zahlen gezogen
werden.

3. Trage diese in den Schein ein und

4. gib ihn im Lottobiiro ab.

Die notwendige Zeitreise ist nimlich etwas, das nur von ganz besonders befihigten Perso-
nen oder Maschinen ausgefiihrt werden kann. Wer einen Algorithmus liest und versteht,
soll anschliefSend wissen, was genau er zu tun hat und wie er es tun soll. Auch das Pizza-
rezept in Abbildung 1.1 ist kein guter Algorithmus, denn auch wenn damit jeder zu einer
Pizza kommt, ldsst es doch zu viele Fragen offen. Und selbst wenn man in Einzelfillen viel-
leicht dariiber streiten kann, was genau »wohldefiniert« ist und was nicht — das Prinzip ist
sicher klar.

KAPITEL 1 Algorithmen 27

™ Pizzarezept

1. Man nehme Mehl, Wasser und noch mehr
Mehl, und mische alles zusammen.

2. Jetzt kommen irgendwelche weiteren
Zutaten hinzu. Alles gut durchmischen.

3. Der Teig muss jetzt ruhen; am besten
irgendwo, wo es warm ist.

4. Den fertigen Teig ausrollen, belegen und
ab damit in den Backofen.

5. Ein paar Stunden spdter Backwerk im Mall
entsorgen und Pizza beim Lieferservice
bestellen.

Guten Appetit!

Abbildung 1.1: Dieses Backrezept erfillt nicht die strengen Anforderungen an
gute Algorithmen.

Bei den Algorithmen, die uns in diesem Buch am meisten interessieren, werden allerdings
keine Backzutaten, sondern Daten verarbeitet. Freiheit von Magie bedeutet, dass alle
Aktionen des Algorithmus auch von einem einfachen Computer ausgefithrt werden
konnen. Computer mit adressierbaren Speicherzellen, in denen Werte liegen, die durch
Zuweisungen und Rechenoperationen modifiziert werden konnen, sind die Basis fiir alle
solchen Algorithmen.

Jeder Algorithmus hat ein Ziel. Er soll eine Aufgabe erfiillen oder ein Problem losen. Begin-
nen wir mal mit einer einfachen Aufgabe, die wir grof3spurig Summationsproblem nennen.

Problem: Summation
Eingabe: eine natiirliche Zahl n

Berechne: die Summe s aller natiirlichen Zahlen, die kleiner oder gleich # sind:
S=Zi=1+2+"'+l’l
i=1

Wollen wir die Summe bis zu einem bestimmten Wert berechnen, sagen wir bis n = 100,
dann haben wir es mit einer Instanz des Problems zu tun. Die allgemeine Fassung der Auf-
gabenstellung ist also das Problem, eine ganz spezielle Aufgabenstellung mit festgelegten
Eingabedaten ist eine Probleminstanz.

28 TEIL| Grundbegriffe

Probleme kann man auf verschiedene Arten losen. Am einfachsten ist es, wenn man die
Losung in einem Buch nachschlagen oder im Internet suchen kann. Aber das zdhlt hier
nicht. Unsere Methoden sollen das Problem namlich selbst losen.

Fiir das Summationsproblem gibt es zwei Verfahren, von denen zumindest das erste jeder
kennt. Entweder konnen wir die Zahlen, eine nach der anderen, aufaddieren. Alternativ
konnen wir auch die sogenannte gau3sche Summenformel anwenden (Abbildung 1.2). Ein
Problem, zwei Algorithmen, die auf unterschiedlichen Ideen zur Losung des Problems be-
ruhen. Hier zundchst der naive Aufaddier-Algorithmus: »Nimm als Eingabe eine natiirliche
Zahl n. Nun initialisiere die Summe s mit 0. Zéhle anschliefSend alle Zahlen von 1 bis 7z auf
und addiere sie jeweils zu s hinzu. Gib am Ende s zuriick.«

10
. | 2 OO
h ! 3 OOo
2 oooo
oooog
— Ooooog o o o o o o [o
n 0o000ogo 0O000000oooo
7 0oOo00ogog ooooooooooo >
n-1 OO0O0O00O0O0O0O 000000000o0O
n 0ODOO00O0ODO0OO O0000000ooo
n+1

1+2+3+.. . +n = %-(nﬂ)

Abbildung 1.2: Die gaul3sche Summenformel

Ein einfacher Algorithmus wie dieser ldsst sich noch ganz gut auf Deutsch hinschreiben.
Sobald die Algorithmen aber etwas komplizierter werden — und es werden in diesem
Buch noch um einiges kompliziertere Algorithmen vorkommen —, wird es mit Pseudocode
iibersichtlicher. Hier also der gleiche Algorithmus in Pseudocode:

Summation1(n) n: eine natiirliche Zahl
s<0 beginne mit O als bisher berechneter Summe
§—s+1 addiere 1 zur Summe s
ifn=1 wenn n = 1 ist,
returns fertig
S S5+2 addiere 2 zur Summe s
ifn=2 wenn n = 2 ist,

returns fertig

KAPITEL 1 Algorithmen 29

§<s+3 addiere 3 zur Summe s

ifn=3 wenn n = 3 ist,
return s fertig

S s+4 addiere 4 zur Summe s

ifn=4 wenn n = 4 ist,
return s fertig

und so weiter, und so weiter

Die drei Piinktchen »...« sollen andeuten, dass der Pseudocode immer weiter und weiter
und weiter geht. Schliefllich kann das # beliebig grof sein. Aber Moment mal, das ist ja
blod, denn ein Algorithmus soll schliefilich endlich beschreibbar sein! Wenn man einen un-
endlich langen Text braucht, um den Algorithmus aufzuschreiben — dann ist das tiberhaupt
kein Algorithmus. Zugegeben: Wir haben auch keinen unendlich langen Text hingeschrie-
ben (sonst wire das Buch ja viel zu dick geworden), sondern ihn mit »...« abgekiirzt. Diese
drei Punkte sind allerdings ein wenig ungenau, denn es wird ja nicht direkt gesagt, was wie-
derholt werden soll. Wenn man den Algorithmus verstehen will, muss man im Abschnitt
vor den drei Punkten nach einem wiederkehrenden Muster suchen. In diesem Fall wire das
zum Beispiel: »Die Zahl, die zu s addiert wird, wird jedes mal um 1 gréfler, und anschlief3end
vergleicht man # auch immer mit dieser um 1 gréferen Zahl«. Ein solcher Interpretations-
bedarfist aber umstandlich, und darum wollen wir hier lieber eine Schreibweise verwenden,
die explizit, also klipp und klar sagt, was genau zu tun ist:

Summation1(n) n: eine natiirliche Zahl
s<0 beginne mit O als bisher berechneter Summe
fori<1,..,n nimm jede Zahl i von 1 bis n
S s+i und addiere sie zur bisher berechneten Summe
return s fertig

Das ist immer noch der gleiche Algorithmus Summation1 wie oben, nur deutlicher hin-
geschrieben. Was die ganzen Zeichen wie der Pfeil < oder Worter wie for und return
bedeuten, werden wir etwas spéter noch genauer sagen. Nun erst einmal zur alternativen
Methode mit gau8scher Summenformel:

Summation2(n)

8 @ berechne die Summe mit der gauf3schen Formel

return s fertig

Bei der Summation handelt es sich um ein Berechnungsproblem, bei dem aus Eingabedaten
Ausgabedaten berechnet werden. Wenn man nur eine Ja-/Nein-Antwort haben will, dann
handelt es sich um ein Entscheidungsproblem, und wenn man die beste unter vielen mogli-
chen Losungen benétigt, dann hat man es mit einem Optimierungsproblem zu tun.

Die Losung, die ein Algorithmus zu einer Instanz des Problems liefert, muss natiirlich kor-
rekt sein. Beim einfachen Aufaddieren ist die Korrektheit offensichtlich. Die Formel liefert
ebenfalls das korrekte Ergebnis. Das ist nicht ganz so offensichtlich, aber mit etwas Nach-
denken oder der Hilfe von Wikipedia kann man sich davon tiberzeugen.

30 TEILI Grundbegriffe
Fassen wir zusammen:

Ein Algorithmus ist ein Verfahren zur Losung eines Problems. Es gibt verschiede-
ne Arten von Problemen:

4 Berechnungsprobleme,
v/ Entscheidungsprobleme und

v/ Optimierungsprobleme.

Eine Probleminstanz ist ein Problem fiir ganz bestimmte Eingabedaten.

Algorithmen basieren auf einem
einfachen Maschinenmodell

Am Beginn der Informatik standen folgende Fragen aus dem Bereich der Grundlagenfor-
schung in Mathematik und Informatik: Was darf man denn tiberhaupt hinschreiben, wenn
man eine Berechnung definiert? Welche Rechnungen konnen tatsédchlich ausgefithrt wer-
den? Was also ist tiberhaupt »rechenbar«? Daraus ist die Theorie der Berechenbarkeit ent-
standen. Am Schluss war man sich einig, dass etwas »rechenbar«ist, wenn es von einer wohl-
definierten einfachen Maschine ausgefithrt werden kann. Von allen Maschinenmodellen ist
die Turingmaschine (Abbildung 1.3) wohl die bekannteste. Sie besteht aus einem einfachen
Steuerautomaten, der sozusagen das Programm der Maschine beinhaltet, und hat dariiber
hinaus ein unbegrenzt langes Speicherband, in dem Buchstaben aus einem endlichen Alpha-
bet gespeichert werden konnen. Mit einem Schreib-/Lesekopf kann die Turingmaschine in
jedem Schritt eine Zelle des Speicherbands auslesen und verandern und anschliefend darf
sie den Schreib-/Lesekopf um ein Feld nach links oder rechts bewegen. Das ist also eine
denkbar einfache Maschine, die jedoch erstaunlich vielseitig ist.

Manch andere Maschinen sind eingeschrénkter und man kann weniger mit ihnen berechnen
als mit einer Turingmaschine. Nimmt man der Turingmaschine beispielsweise ihr Speicher-
band weg, sodass sie nur noch ein endlicher Automat ist, verliert sie deutlich an Méglichkei-
ten. Andere Maschinenmodelle hingegen konnen genauso viel wie die Turingmaschine, sie
sind Turing-volistindig. Es gibt die unterschiedlichsten Turing-vollstdndigen Maschinen-
modelle, die nach sehr verschiedenen Prinzipien funktionieren, aber wenn die eine Maschi-
ne ans Ziel kommt, dann schaffen das die anderen auch immer irgendwie.

Fiir die Theorie der Algorithmen verwendet man meist die sogenannte Random Access Ma-
chine (RAM), was auf Deutsch mit »Maschine mit wahlfreiem Speicherzugriff« tibersetzt
werden konnte. Das ist ein einfacher hypothetischer Computer mit einer unbegrenzten Zahl
an adressierbaren Speicherstellen, auf dem Programme mit Zuweisungen und den tiblichen
Kontrollanweisungen ablaufen konnen. Das Gute an der RAM: Sie ist den heute tiblichen
Computern hinreichend dhnlich, sodass jeder mit ein wenig Programmiererfahrung sofort
ein Gefiihl dafiir hat, was fiir die RAM eine »elementare« Operation sein konnte und was
nicht. Wie reale Computer ist sie auflerdem Turing-vollstindig und eignet sich damit aus-
gezeichnet als Grundlage fiir Algorithmen. In Pseudocode soll alles erlaubt sein, was in
Aktionen einer RAM tibersetzt werden kann.

KAPITEL 1 Algorithmen 31

Turingmaschine

Steuerautomat

4D
80(9 \ beweglicher

Schreib-/Lesekopf

[ATc]GJofRTT]T]H][m]E]N]

unendliches Speicherband

Raondom Access Machine

CPU unendlicher Speicher

00 o1 02

03 o4 o5 o6 o1 |
E\65|76,71|79‘82|73W‘

J

—
=P <':‘>

08 09 10 1M1 12 13 14 15
72 \77 Jﬁ‘a] 78 | 32 ‘70Jizo| szj
16 17 18 19 20 21

l} |68 |85] 77 [7 ‘73 ﬁsﬂ%(

Abbildung 1.3: Turingmaschine und RAM sind zwei Maschinenmodelle.

Die RAM hat folgende Féhigkeiten:
v/ Sie hat Speicherstellen fiir beliebige endliche Daten.

v/ Diese konnen mit Zuweisungen und den iiblichen arithmetischen Operationen mani-
puliert werden.

Daneben kann die RAM auch Kontrollanweisungen ausfithren, ndmlich
v/ bedingte Anweisungen,
v/ Schleifen sowie
v/ (rekursive) Funktions- und Prozedurdefinitionen.

Im Zweifelsfall miisste noch spezifiziert werden, welche Operationen im Detail zur
Verfligung stehen. Reelle Zahlen sind beispielsweise nicht mit endlichem Speicher exakt
darstellbar, sie gehdren darum nicht zu den elementaren Daten der RAM. Wenn das

32 TEILI Grundbegriffe

von Relevanz ist, dann muss zum Algorithmus angegeben werden, wie genau die Zahlen
angendhert dargestellt werden und welche Operationen mit wie vielen Schritten diese
Zahlen verarbeiten. Ist es irrelevant, dann wird das Thema ignoriert.

Algorithmen sind bewertbar

Wenn man nicht gerade ein Lehrer ist, der mal seine Ruhe haben will und seine Schiiler
dazu mit Rechenarbeiten beschiftigt hilt, dann ist die zweite Methode der Summation, die
mit der gaufischen Formel, natiirlich die bessere. Statt wie Summation1 » — 1 Additionen
zu benétigen, wird von Summation2 die Summe von 1 bis # mit nur einer Addition, einer
Multiplikation und einer Division berechnet.

Wir haben gerade die Effizienz der beiden Algorithmen bewertet. Genauer gesagt die
Laufzeit-Effizienz. Dabei geht es darum, wie viele elementare Rechenschritte ein Algorith-
mus ausfithren muss, um das Problem zu 16sen. Die Zahl der Rechenschritte héngt in der
Regel von der Eingabe ab. Fiir ein grofes n werden bei der ersten Summationsmethode
mehr Rechenschritte benotigt als bei einem kleinen #. Die Zahl der Rechenschritte bei der
Anwendung der gaufischen Formel ist dagegen unabhéngig von der Eingabe. Allerdings ist
fiir sehr kleines n wie zum Beispiel # = 2 die Berechnung der Summe mit der gauf3schen
Formel

2-2+1)
S=— =
2

3

sicher weniger effizient als das einfache Aufaddieren
s=1+2=3

Um solche Ausreifler zu vermeiden, ldsst man kleine Werte darum bei der Bewertung der
Effizienz eines Algorithmus aufler Acht.

der Rechenschritte, die der Algorithmus fiir eine bestimmte Eingabe ausfiihrt,

Die Laufzeit-Effizienz eines Algorithmus sagt etwas dariiber aus, wie die Zahl
von deren Grof3e abhéngt. Mehr dariiber erfahren Sie in Kapitel 2.

Fassen wir zusammen:

den, die sich in ihrer Effizienz unterscheiden. Die Laufzeiteffizienz ist das wich-
tigste Effizienzkriterium. Sie gibt an, wie viele Rechenschritte ein Algorithmus
bei der Ausfithrung benétigt.

0 Ein Problem kann oft von mehreren unterschiedlichen Algorithmen geldst wer-

Algorithmen agieren in Modellwelten

Im Prinzip kann ein Algorithmus mit beliebigen Dingen umgehen. Ein Kochrezept ist ein Al-
gorithmus, der mit Kochzutaten arbeitet. Wir betrachten aber nur Algorithmen, die Daten
verarbeiten. Natiirlich stammen die Daten meist aus der realen Welt und die vom Algorith-
mus berechneten Daten wirken auch wieder auf die reale Welt ein.

KAPITEL 1 Algorithmen 33

Ein Programm, das den kiirzesten Weg zwischen zwei Orten sucht, lduft nicht in der Ge-
gend herum, sondern arbeitet mit Daten, welche die Landschaft repriasentieren. Die digitale
Version einer Landkarte enthilt viele Informationen, von denen nur manche fiir das aktuel-
le Problem relevant sind. Bei dem Problem des kiirzesten Weges sind das beispielsweise die
Orte und Wege, die sie verbinden, und deren jeweilige Lange.

Ein Algorithmus zur Wegfindung wird so formuliert, dass er nur die auf das Wesentliche
konzentrierten Informationen als Eingabe hat. Bei der Wegfindung ist das ein Graph: Objek-
te und ihre mit einer Bewertung versehen Verbindungen. In der Welt der Algorithmen und
Datenstrukturen verwendet man gerne Konzepte aus der diskreten Mathematik: Mengen,
Relationen, Graphen. Damit konnen die wesentlichen Informationen einer Problemstellung
und deren Losung leicht und iibersichtlich zum Ausdruck gebracht werden.

Ein Programm, das mit einer bestimmte Form einer digitalen Landkarte arbeitet, muss
natiirlich mit den Daten in der konkreten Form arbeiten, in der sie zur Verfiigung stehen.
Das konnen Tabellen einer Datenbank sein, Klassen und Objekte einer objektorientierten
Programmiersprache und vieles mehr. Ein Algorithmus 16st das Problem in der mathema-
tischen Modellwelt. Das ist sozusagen die »Zeichnung« der Losung. Wird der Algorithmus
in einer bestimmten Programmiersprache implementiert, dann transferiert man die
Aktionen des Algorithmus auf »mathematischen Objekten« in Aktionen des Programms
auf konkreten Daten (Abbildung 1.4).

int s=0;
for (int i=1;ifn;++i){
s+=i;

}

return s;

reale Welt Algorithmen Programme
Anwendungen Pseudocode Programmiersprachen
Daten mathematische Zeichen Klassen

volle Windeln Mengen Softwarebibliotheken

Abbildung 1.4: Algorithmen und Programme in Modellwelten

Algorithmen sind keine Programme

Ein Algorithmus ist ein Verfahren zur Losung eines Problems, bei dem man sich auf das
Wesentliche konzentriert: Welche relevanten Informationen werden mit welchen elemen-
taren Schritten in eine Losung transformiert? Das ist wie eine Melodie, die man singen oder
auf diversen Musikinstrumenten spielen kann. Unterschiedlich, aber irgendwie doch immer
das erkennbar Gleiche.

34 TEILI Grundbegriffe

Pseudocode entspricht der Notenschrift, in der das Wesentliche aufgeschrieben wird:
knapp, klar und unabhéngig von bestimmten Instrumenten. Ein Programm ist etwas, das
ein Prozessor ausfithren kann, zum Beispiel eine bestimmte synaptische Struktur im Gehirn
eines Singers, eine Rille in einer Schallplatte, Nullen und Einsen in einer MP3-Datei und
so weiter. Bei einer Ausfithrung beziehungsweise Auffithrung wird das Programm vom
Prozessor abgearbeitet (Abbildung 1.5). Die Musik ertont entsprechend der Melodie, und
wenn die Noten nicht verloren gehen, wird sie noch genauso zum Klingen gebracht werden
konnen, wenn jede Erinnerung an Schallplatten und MP3-Dateien vergangen ist.

Programm

Programm

Algorithmus Programmausfihrung
Abbildung 1.5: Ein Algorithmus und drei ausfihrbare Programme, die ihn implementieren

Programme und Algorithmen sind also unterschiedliche Dinge. Eine Programmiersprache
hat auch viel mehr zu leisten, als nur eine Notation fiir die Ausfithrung von Algorithmen zu
sein. Sie muss

v/ in effizienten Maschinencode iibersetzbar oder von einem Interpreter ausfiihrbar sein,
v/ von ihren Anwendern effektiv zu nutzen sein und
¢/ bestimmten softwaretechnischen Anforderungen geniigen.

Programmiersprachen haben immer ein exakt definiertes beschranktes und festes Reper-
toire an Ausdrucksmitteln. Dazu gehort vieles, das nicht direkt mit Algorithmen zu tun hat.
Manche legen Wert darauf, dass die Sprache mit wenig Miihe schnell erlernbar ist, andere
dass sie in einem bestimmten Anwendungsgebiet besonders effektives Arbeiten erméglicht
oder dass sie die Konstruktion von Anwendungen mit hunderttausenden von Zeilen Quell-
code effektiv unterstiitzt etc.

Diese Ziele widersprechen sich teilweise. Um sie zu erreichen, gibt es diverse Ebenen, auf
denen sich die Programmierer bewegen konnen, und eine mehr oder weniger umfangrei-
che Sammlung von Konzepten zur Modularisierung und Abstraktion: Klassen, Funktionen,
Pakete, generische Klassen, Module, was auch immer. All das unterliegt nicht nur dem ak-
tuellen Zeitgeist, der mal hierhin und mal dahin weht. Es unterscheidet sich auch drastisch
von Sprache zu Sprache je nach deren Einsatzgebiet, vermuteter Kompetenz der Entwickler
und so weiter.

All dies ist sehr wichtig, lenkt aber hier nur vom eigentlichen Kern der Dinge, dem Algo-
rithmus, ab.

KAPITEL 1 Algorithmen 35

Algorithmen klar beschreiben

Algorithmen werden oft in Pseudocode beschrieben. Pseudocode ist fiir Menschen gemacht.
Er darf darum deren Kreativitat ausschopfen. Alles Magische ist verboten, alles andere prin-
zipiell erlaubt. Magisch ist das, was sich nicht in Aktionen der RAM ausdriicken lasst. Im
Sinne einer guten Lesbarkeit und Prazision versucht man in der Regel alles méoglichst formal
hinzuschreiben. Unter guten Freunden darf man aber auch manchmal etwas vage bleiben
und einzelne Schritte zum Beispiel auf Deutsch beschreiben. Es muss aber immer klar sein,
wie diese Notation in zdhlbare Aktionen auf der RAM umgesetzt werden kann.

Sprechen Sie Pseudocode?

Der Sprachumfang des Pseudocodes muss nicht bis ins Detail formal definiert werden, denn
es handelt sich ja nicht um eine Programmiersprache, sondern um ein Kommunikationsme-
dium, mit dem sich Menschen tiber Algorithmen austauschen. Wir wollen trotzdem einmal
die wichtigsten »Sprachelemente« durchgehen und uns dartiber verstindigen, was wir damit
meinen.

In diesem Buch wird ein Pseudocode benutzt, der weithin iibliche Sprachelemente benutzt
und vielleicht ein wenig an die Programmiersprache Python erinnert. Anweisungsblocke in
einer Schleife oder solche, die in einer if-Anweisung ausgefiihrt werden, werden durch eine
gemeinsame Einriickung nach rechts gekennzeichnet, enden also da, wo die Anweisungen
nicht mehr rechts eingertickt sind.

Algorithmen

Algorithmen im Pseudocode entsprechen grob den Funktionen, Prozeduren oder Metho-
den in den Programmiersprachen. Jeder Algorithmus beginnt zunéchst mit seinem Namen
gefolgt von einer Liste an Eingabeparametern in runden Klammern:

Algo(n) Algo ist ein Algorithmus, der n als Eingabe bekommt

Die gleiche Notation verwenden wir beim Aufruf eines Algorithmus.

Variablen und Zuweisungen

Variablen dienen zum Speichern von Daten aller Art. Sie dndern ihren Wert durch eine
Zuweisung. Wir verwenden fiir Zuweisungen nicht wie oft tiblich ein Gleichheitszeichen,
sondern einen Pfeil:

i< 17 die Variable i wird auf den Wert 17 gesetzt
jei+1 jistnun 18, i bleibt 17

Das Gleichheitszeichen »=« reservieren wir fiir Vergleiche.

Variablen sind in der Regel lokal, das heifit, sie gelten nur innerhalb des aktuellen Aufrufs
des Algorithmus. Das ist insbesondere bei rekursiven Algorithmen niitzlich.

36 TEILI Grundbegriffe

Schleifen

Bei einer Schleife wird ein Anweisungsblock mehrfach ausgefiihrt. Wir verwenden zwei un-
terschiedliche Arten von Schleifen, die for- und die while-Schleife.

Bei der for-Schleife wird eine Variable nacheinander auf eine Reihe von Werten gesetzt und
dann jeweils ein Anweisungsblock ausgefiihrt:

fori«1,..,17 i wird nacheinander auf 1, 2, ..., 17 gesetzt ...
Algo(i) ... und fur jedes i der Algorithmus Algo aufgerufen
Algo(100) diese Zeile wird erst nach der Schleife ausgefiihrt

Bei der while-Schleife wird zunichst eine Bedingung gepriift und im Fall, dass diese erfiillt
ist, ein Anweisungsblock ausgefiihrt. Dies wird so lange wiederholt, bis die Bedingung zum
ersten Mal nicht erfillt wurde:

i< 1 die Variable i wird auf den Wert 1 gesetzt
whilei <17 solange i < 17 ist ...
Algo(i) ... rufe Algo mit i als Parameter auf ...
i—i+1 ... und erhéhe i um 1
Algo(100) diese Zeile wird erst ausgefiihrt, wenn i > 17 ist.

Bedingte Anweisungen

Mit if wird eine Bedingung gepriift, und wenn sie erfiillt ist, wird ein Anweisungsblock
ausgefiihrt:

ifi>17 wenn i > 17 ist, ...
Algo(i) ... rufe den Algorithmus Algo mit i als Parameter auf

Folgt nach einem if ein else, so wird der nachfolgende Anweisungsblock ausgefiihrt, wenn
die Bedingung der vorangegangenen if-Anweisung nicht erfiillt war:

ifi>17 wenn i > 17 ist, ...
Algo(i) ... rufe den Algorithmus Algo mit i als Parameter auf
else ansonsten, also wenn i < 17 ist, ...
Algo(100) ... rufe den Algorithmus Algo mit Parameter 100 auf
Sonstiges

Mit break verldsst man die aktuelle Schleife.
Mit return beendet man den aktuellen Aufruf eines Algorithmus. Dabei kann man optional

auch noch einen Riickgabewert fiir den aufrufenden Algorithmus zuriickgeben.

Weitere Sprachelemente werden bei der Diskussion der Datenstrukturen in den
Kapiteln 3 bis 6 eingefiihrt.

KAPITEL 1 Algorithmen 37

Mathematische Ausdriicke sind erlaubt

Im Pseudocode verwenden wir viele Elemente der tiblichen mathematischen Notation. Wir
nutzen zum Beispiel Mengendefinitionen, bei denen man nicht jedes einzelne Element auf-
zahlt, sondern die Elemente der Menge iiber eine Eigenschaft bestimmt. Wenn M zum
Beispiel eine Menge ist, konnen wir Folgendes schreiben:

a <« {x € M | xist gerade} a ist die Menge aller geraden Zahlen in M

Entsprechendes kann man auch fiir geordnete Folgen L definieren, nur dann mit eckigen
statt geschweiften Klammern:

b« [x € L | xist gerade] b ist eine Liste, die alle geraden Zahlen aus L enthdlt

Derartige Konstrukte erleichtern die Formulierung von Algorithmen enorm. Sie werden von
vielen modernen Programmiersprachen unterstiitzt (leider nicht von Java) und dort zum
Beispiel For-Comprehension genannt.

Wenn man mag, kann man es auch noch weitertreiben und zum Beispiel noch ein Summen-
zeichen davor schreiben:

s < Y{x € M | xist gerade} s ist die Summe aller geraden Zahlen in M

Das ist deshalb kein Problem, weil jeder Leser des Pseudocodes sofort weif3, wie er das in
»normalen« Pseudocode umsetzen kann, nimlich zum Beispiel so:

s< 0 s auf 0 initialisieren
forx <« M alle Elemente in M durchlaufen
if x ist gerade sobald eine gerade Zahl x gefunden wurde, ...
S Ss+x ... wird sie zu s addiert

Die Regel lautet immer: Alles ist erlaubt, solange jeder versteht, was gemeint ist und wie
man es in elementare Operationen des Maschinenmodells (also zum Beispiel der RAM)
umsetzen kann.

Algorithmen sprechen sogar Deutsch

Wenn man mochte, darf man im Pseudocode sogar einfach die deutsche Sprache verwen-
den, wie wir das zum Beispiel gerade mit dem Ausdruck »x ist gerade« getan haben. Das
ist vollkommen in Ordnung, solange jedem im Prinzip klar ist, wie man auf der RAM priifen
kann, ob eine Zahl gerade oder ungerade ist. Bei Bedarf kann man das natiirlich weiter aus-
formulieren, zum Beispiel mit »x modulo 2 = 0«. Dabei gehen wir davon aus, dass fiir
die RAM wie fiir alle gingigen Computer die Operation modulo zu den Basisoperationen
gehort, so dass sie den Rest einer Division zweier ganzen Zahlen berechnen kann.

38 TEILI Grundbegriffe

Wenn man es eilig hat und in einem Algorithmus die Summe aller geraden Zahlen in einer
Menge M benétigt, so konnte man das im Pseudocode auch einfach so schreiben:

s < die Summe aller geraden Zahlen in M

Aber Vorsicht: Im Zweifelsfall miissen Sie immer in der Lage sein, das genauer zu erkldren,
es also bis auf elementare Operationen einer RAM herunterzubrechen. Nachdem wir im
vorangegangenen Abschnitt ausfiihrlich dariiber geredet haben, sollte das nun ja auch kein
Problem mehr sein.

Algorithmen sind L6sungen, keine Probleme

Wenn wir mathematische Definitionen oder sogar deutsche Sitze in unsere Algorithmen
einbauen, miissen wir allerdings aufpassen, dass am Ende auch wirklich ein Algorithmus
dabei herauskommt. Ein Algorithmus ist ein Verfahren zum Losen eines Problems, nicht
das Problem selbst. Mathematiker haben zum Beispiel keine Hemmungen, Mengen zu de-
finieren, von denen niemand weif3, wie man sie tatsichlich berechnen konnte. Bei manchen
mathematischen Mengen kann man sogar beweisen, dass man sie gar nicht berechnen kann.
Im Abschnitt Das Halteproblem ist unlésbar werden Sie eine solche Menge kennenlernen.
Ein Problem blof3 zu definieren, ist also etwas ganz anderes, als es auch zu lésen.

Lassen Sie uns dazu eine Aufgabe betrachten, die schon die Landvermesser im alten
Agypten zu l6sen hatten, namlich der Suche nach dem gréfiten gemeinsamen Teiler zweier
natiirlicher Zahlen, also zweier Zahlen aus der Menge N = {1,2, 3, ...}:

Problem: Grofiter Gemeinsamer Teiler (GGT)
Eingabe: zwei natiirliche Zahlen n und m

Berechne: die grofite natiirliche Zahl ¢, die sowohl ein Teiler von # als auch von m ist

Man konnte versuchen, das Problem auf folgende Weise zu l6sen:

GGT1(n, m) n und m seien natirliche Zahlen
t < max{x € N | x teilt #n und x teilt m} berechne den GGT
return ¢

Lassen Sie uns der Klarheit halber die Menge noch einmal in Form einer Schleife ausformu-
lieren:

GGT1(n, m) n und m seien nattirliche Zahlen
t<1 1 ist ein gemeinsamer Teiler von n und m
forx <« N durchlaufe alle Zahlen aus N in aufsteigender Reihenfolge
if x teilt n und x teilt m wenn x gemeinsamer Teiler von n und m ist, ...
t—x ... merke dir x

return ¢

KAPITEL 1 Algorithmen 39

Das ist der gleiche Algorithmus, nur anders hingeschrieben. Allerdings gibt es ein Problem:
Es gibt unendlich viele natiirliche Zahlen, also wird die for-Schleife niemals damit fertig, sie
aufzuzdhlen. Der Algorithmus ist in einer unendlichen Schleife gefangen, umgangssprach-
lich ausgedruckt: Er héingt sich auf.

Dass sich Algorithmen »aufhdngen« konnen, wird uns gleich noch ausfiihrlich beschiftigen.
Zum Gliick kann man den Algorithmus leicht retten: Alle Zahlen grofier als # sind keine
Teiler von 7, und alle Zahlen grof3er als m keine Teiler von m. Der GGT muss also sowohl
< n also auch < m bleiben, das heifit, es reicht aus, die Schleife bis zum Minimum von m
und # laufen zu lassen:

GGT2(n, m) n und m seien nattirliche Zahlen
t<1 1 ist ein gemeinsamer Teiler von n und m
forx < 2, ..., min(n, m) durchlaufe alle Zahlen von 2 bis min(n, m)
if x teilt n und x teilt m wenn x gemeinsamer Teiler von n und m ist, ...
t—x ... merke dir x
return ¢

Das konnen wir dann auch wieder verkiirzt als mathematische Menge formulieren und wie
folgt hinschreiben:

GGT2(m, n) n und m seien nattirliche Zahlen
g < min(n, m) g sei das Minimum von n und m
t < max{x €{1, ... g} | xteilt mund x teilt m} berechne den GGT
return ¢

Das ist zwar nicht der schnellste Weg zur Berechnung des GGT, aber immerhin eine M6g-
lichkeit.

Algorithmen haben zahlbare Schritte

Wenn wir spater Algorithmen miteinander vergleichen wollen, so sollte exakt bestimmbar
sein, wie viele elementare Schritte ein Algorithmus benétigt, wenn man ihn auf einer Ein-
gabe einer gegebenen Grofle ausfiithrt. Die Laufzeit des Algorithmus GGT2 zur Berechnung
des grofiten gemeinsamen Teilers wird zum Beispiel entscheidend vom Minimum der bei-
den Eingabewerte # und m beeinflusst: Bis zu diesem Wert lduft die Schleife.

In jedem Schleifendurchlauf des Algorithmus wird eine Zahl x darauthin gepriift, ob sie
ein Teiler von # und m ist. Diese Priifung kann natiirlich auch auf unterschiedliche Arten
erfolgen. Man konnte beispielsweise x so lange von m beziehungsweise # subtrahieren, bis
das Ergebnis 0 oder eine Zahl kleiner 0 ist. Endet man bei 0, dann ist x ein Teiler, ansonsten
nicht. Damit hat unser Algorithmus dann die folgende Definition:

GGT3(n, m) n und m seien nattirliche Zahlen
t<1 1 ist ein gemeinsamer Teiler von n und m
forx <« 2, ..., min(n, m) durchlaufe alle Zahlen von 2 bis min(n, m)
if isDivisor(x, 1) und isDivisor(x, n) wenn x Teiler von n und m ist, ...
t—x ... merke dir x

return ¢

40 TEIL| Grundbegriffe

isDivisor(x, z) priift, ob x ein Teiler von z ist
whilez > 0 solange noch z gréf3er als 0 ist, ...
ZezZ—X ... Ziehe x von z ab
return (z =0) wenn am Ende z = 0 ist, war z am Anfang

durch x teilbar, sonst nicht

Natiirlich braucht ein Algorithmus, der die Teilbarkeit in einem Schritt bestimmen kann,
weniger Schritte als einer, der fiir jeden Test eine Schleife laufen lassen muss. Die meisten
modernen Prozessoren unterstiitzen die Modulo-Operation »7n modulo x«, die den Rest
einer ganzzahligen Division von # geteilt durch x berechnet. In vielen Programmiersprachen
wird diese Operation mit einem %-Zeichen geschrieben, andere schreiben dafiir mod. Ist
dieser Rest gleich 0, so ist # offenbar durch x teilbar; ist der Rest hingegen ungleich 0, so ist n
nicht durch x teilbar. Dieser Test geht schnell, in einem einzigen Schritt. Es ist darum legitim
anzunehmen, dass der Test auf Teilbarkeit unabhéngig von der Grofie der involvierten Werte
ist. Wir unterstellen unserer RAM einfach die entsprechende Féhigkeit.

Wenn der Algorithmus andererseits auf einer Maschine lauft, bei der dies nicht gegeben
ist, dann sieht die Sache vollig anders aus. Die Berechnung kann dann unter Umstédnden
nicht mehr in einem Schritt erfolgen, sondern benotigt zum Beispiel eine Extraschleife, de-
ren Laufzeit von x und # abhéngt. In diesem Fall sollte man das bei der Beschreibung des
Algorithmus auch dringend so hinschreiben, damit niemand auf die irrige Idee kommt, dass
die Teilbarkeit eine elementare Operation des hinter dem Algorithmus stehenden Maschi-
nenmodells ist.

Mehr tiber die Abschidtzung und den Vergleich der Laufzeiten von Algorithmen
finden Sie in Kapitel 2.

Algorithmen sollten korrekt sein

Wenn Sie sich einen Algorithmus ausdenken und hinschreiben, dann méchten Sie natiirlich
auch, dass er korrekt ist. Er soll genau das tun, was Sie von ihm wollen, und zwar bei jeder
zuldssigen Eingabe. Wie aber kann man dafiir sorgen, dass ein Algorithmus tatsichlich so
funktioniert, wie man sich das wiinscht?

Die kurze Antwort auf diese Frage: Dafiir gibt es kein Patentrezept. Algorithmen kénnen im
Allgemeinen ndmlich ziemlich schwer zu durchschauen sein.

Betrachten Sie zum Beispiel einmal den folgenden unbekannten Algorithmus, und
iberlegen Sie, was er berechnet, wenn man ihm zwei natiirliche Zahlen x und y iibergibt:

Riddle(n, m) n und m seien zwei nattirliche Zahlen
X< n
yem
p<0

KAPITEL 1 Algorithmen 41

while x > 1
if x ist gerade
X

X =
2

else
pepty

x 1
2

ye20y
return p

Am besten setzen Sie einfach ein paar Zahlen fiir # und m ein, finden heraus, was Riddle
bei diesen Eingaben berechnet, und stellen anschlieflend eine Hypothese dariiber auf, was
der Algorithmus wohl berechnen konnte. Die Auflosung des Rétsels finden Sie im Abschnitt
Die Losung des Riitsels.

Algorithmen kénnen sich aufhangen

Algorithmen sollten sich moglichst nicht »aufhéngen, also keine unendliche Laufzeit ha-
ben, weil sie sich zum Beispiel in einer unendlichen Schleife verfangen haben. Wenn sich ein
Algorithmus einfach aufhédngt, brauchen wir tiber seine Korrektheit gar nicht mehr nach-
zudenken. Ein Ausdruck wie

t < max{x € N | x teilt n und x teilt m}

ist darum nicht erlaubt. Deswegen hingt sich der Algorithmus GGT1 im Abschnitt Algo-
rithmen sind Losungen, keine Probleme ja auch auf.

Im Fall einer Mengennotation, die ja letztlich nur eine verkiirzte Schreibweise fiir eine
for-Schleife ist, kann man das auch sehr gut erkennen und vermeiden, denn bei einer
for-Schleife sieht man ja von Anfang an, wie oft die Schleife durchlaufen wird. Schwieriger
wird das bei while-Schleifen oder auch bei rekursiven Algorithmen, also Algorithmen, die
sich wiederholt selbst aufrufen. Da ist es oft gar nicht so leicht zu erkennen, was sie tun und
ob sie iiberhaupt irgendwann einmal fertig werden. Betrachten Sie zum Beispiel folgenden
einfachen Algorithmus:

Collatz(n) n: eine natiirliche Zahl
while n > 1 solange n noch gréfer als 1 ist, tue Folgendes:
if n ist gerade
n <« g wenn n gerade ist, teile n durch 2
else
n<3-n+1l ansonsten multipliziere n mit 3 und addiere 1 dazu

Kommt dieser Algorithmus immer irgendwann zu einem Ende, oder gibt es Eingaben #, bei
der er immer weiterlduft und niemals endet? Der Mathematiker Lothar Collatz hat diese
Frage erstmals vor tiber 80 Jahren gestellt, und sie ist bis heute unbeantwortet geblieben.
Zwar wurde noch keine Zahl n gefunden, bei der sich der Algorithmus aufhéngen wiirde,
umgekehrt hat aber auch noch niemand bewiesen, dass es keine solche Zahl gibt. Schaut
man sich an, wie sich # im Laufe des Algorithmus veréndert, so erkennt man, dass # immer

42 TEIL| Grundbegriffe

wieder wild rauf- und runterspringt. In Abbildung 1.6 sehen Sie das am Beispiel n = 25: Fiir
diese Eingabe braucht der Algorithmus 23 Durchliufe der while-Schleife, und n erreicht
dabei eine maximale Hohe von 88. Wiren wir stattdessen bei n = 27 gestartet, hitten wir
111 Schleifendurchlaufe benotigt, und # wire dabei bis in eine Hohe von 9323 aufgestiegen.
Groflere Startwerte bedeuten aber nicht zwangsldufig lingere Laufzeiten; bei n = 32 geht es
zum Beispiel immer bergab und die »Talstation« ist nach nur finf Schritten erreicht.

Abbildung 1.6: Der Startpunkt » = 25 fur den Pfad durch das Collatz-Gebirge

Das Halteproblem ist unlésbar

Bei der Wanderung durch das »Collatz-Gebirge« sind Abstiirze also nicht ausgeschlossen.
Aber warum ist es blofy so schwer herauszufinden, ob ein Algorithmus irgendwann endet
oder nicht? Kénnte man nicht eine generelle Methode finden, um genau das zu entscheiden?
Lassen Sie es uns als algorithmisches Problem formulieren:

Problem: das Halteproblem
Eingabe: ein Algorithmus A und eine Eingabe x

Berechne: Entscheide, ob A gestartet auf x irgendwann anhélt oder ob sich der Algo-
rithmus aufhéngt

Leider gibt es keinen Algorithmus, der das Halteproblem fiir beliebige Eingaben A und x
l6st. Das kann man sogar beweisen. Das Halteproblem ist ein klassisches Beispiel fiir ein
nicht berechenbares Problem. Zwar konnte man einfach A mit der Eingabe x starten und
sehen, was passiert, wenn aber A endlos weiterlduft, dann findet man das auf diese Weise
auch erst nach unendlich langer Zeit — also niemals — heraus. Der Ausdruck

KAPITEL 1 Algorithmen 43

{(A,x)|A ist ein Algorithmus, x eine Eingabe, und A(x)héngt sich nicht auf}

ist also ein Beispiel fiir eine Menge, die man zwar durchaus mathematisch korrekt definieren
kann, fiir die es aber keine Berechnungsmethode gibt.

Zwar kann man bei vielen Algorithmen tatséchlich beweisen, dass sie sich nicht authédngen,
es gibt nur kein Verfahren, mit dem sich das fiir beliebige Algorithmen zeigen liefe.

Wenn wir es also schwer haben, herauszufinden, ob sich ein Algorithmus authingt oder
nicht, warum verdndern wir dann nicht einfach unser Maschinenmodell auf eine Weise, dass
sich Algorithmen grundsatzlich nicht mehr aufhédngen konnen? Lassen Sie uns doch die gan-
zen bosen While-Schleifen und Rekursionen verbieten, die uns so grofe Probleme bereiten.
Stattdessen konnten wir uns zum Beispiel auf die sicheren for-Schleifen beschrinken. Ja, das
wiirde gehen, hitte allerdings einen Nachteil: Unser Maschinenmodell wire anschliefend
nicht mehr Turing-vollstindig. Gébe es ndmlich ein Turing-vollstandiges Maschinenmodell,
das sich nicht aufhéngen kann, so konnte man damit das Halteproblem 16sen, und das ist
wie gesagt gar nicht moglich. So gesehen ist es also eigentlich ganz gut, dass Algorithmen
grundsitzlich die Moglichkeit haben, sich aufzuhéngen, denn nur dadurch kénnen Sie ihr
volles Potenzial ausschopfen.

enden nie. Ob sich ein Algorithmus aufhéngt oder nicht, ldsst sich leider oft nur
schwer abschitzen, und es gibt es keine formale Methode, mit der sich das immer
sicher verhindern lésst.

@ Algorithmen konnen sich »authdngen«, das heif3t, sie laufen immer weiter und

Algorithmen richtig verstehen

Wenn es schon schwer ist, festzustellen, ob ein Algorithmus irgendwann anhilt oder nicht,
dann kann es sicherlich auch nicht leichter sein, herauszufinden, was der Algorithmus
iiberhaupt tut, und ob er auch das tut, was man sich von ihm erwiinscht.

Die L6sung des Ratsels

Um das zu veranschaulichen, lassen Sie uns iiber den geheimnisvollen Algorithmus Riddle
weiter vorne in diesem Kapitel reden.

Man kann ziemlich leicht erkennen, dass sich der Algorithmus immerhin nicht aufhingt.
Bei jedem Durchlauf der while-Schleife verringert sich nimlich der Wert von x, und das tut
er so lange, bis x# < 1 ist und die Schleife abbricht.

Was genau berechnet der Algorithmus denn nun? Haben Sie es herausgefunden?

Die Antwort ist einfach: Riddle berechnet das Produkt aus den beiden Eingaben # und m,
also

Riddle(n, m)=n - m

44 TEIL| Grundbegriffe

Ubrigens nennt man den Algorithmus auch »agyptische Multiplikation«. Die Metho-
de scheint auch tatsdchlich zu funktionieren. Wenn man eine Stichprobe macht und
irgendwelche Werte fiir x und y einsetzt, kommt jedenfalls das Richtige dabei heraus.

Aber konnen wir uns sicher sein, dass Riddle tatséchlich immer das Produkt von # und m
berechnet? Nur weil es bei ein paar Beispielen fiir » und m gestimmt hat, muss es ja nicht
fiir alle Eingaben funktionieren. Wenn wir ganz sicher sein wollen, miissten wir das Ergebnis
eigentlich fiir alle moglichen natiirlichen Zahlen # und m tiberpriifen. Aber das geht nicht,
denn dann hitten wir ja unendlich viel zu tun.

Nun hétte man das Gleiche auch fiir praktisch alle anderen Algorithmen sagen konnen, die
wir bisher in diesem Buch besprochen haben. Wie konnen wir uns beispielsweise sicher
sein, dass GGT2 im Abschnitt Algorithmen sind Losungen, keine Probleme auch tatsichlich
den grofiten gemeinsamen Teiler ausrechnet, und zwar fiir alle méglichen Eingaben? Auch
hierfiir gibt es ja wieder unendlich viele Méglichkeiten, und die konnen wir unmdoglich al-
le ausprobiert haben. Der Unterschied zwischen den beiden Algorithmen ist, dass GGT2
sehr einfach zu verstehen ist, wihrend man bei Riddle nicht sofort einsieht, warum der
Algorithmus tiberhaupt funktioniert.

Wenn wir uns sicher sein wollen, dass ein Algorithmus korrekt ist, miissen wir ihn also
wirklich verstehen. Thn ganz und gar durchdringen. Dafiir reicht es nicht aus, dass man
den Algorithmus fiir Beispieleingaben Schritt fiir Schritt nachvollziehen kann. Jede einzel-
ne Zeile in Riddle ist klar und verstindlich, aber in ihrem Zusammenspiel ergeben sich
Konsequenzen, die man nicht direkt tiberblickt.

Am besten wire es, wenn uns jemand den Algorithmus erkldren konnte; wenn wir einen
Text hatten, der mit klaren, nachvollziehbaren Argumenten schliissig begriindet, warum
der Algorithmus das Produkt seiner Eingaben # und m berechnet. Was wir also brauchen,
ist ein Beweis.

dann benotigt man einen Beweis, um ihn richtig zu verstehen und seine Korrekt-
heit einzusehen.

0 Wenn bei einem Algorithmus nicht offensichtlich ist, dass er das tut, was er soll,

Korrektheit beweisen

Wenn ein Algorithmus nur eine feste Anzahl von Anweisungen nacheinander ausfiihrt,
dann ist es noch vergleichsweise einfach, seine Korrektheit zu tiberpriifen. Schwieriger wird
es, wenn die Anzahl der Anweisungen, die wihrend eines Algorithmus ausgefiihrten wer-
den, nicht von Anfang an feststeht, sondern von der Eingabe abhingt. In Riddle gibt es eine
while-Schleife, die so lange durchlaufen wird, bis der Wert x < 1 wird. Am Anfang wird x
auf den Eingabewert n gesetzt und anschliefSend bei jedem Schleifendurchlauf halbiert und
dabei abgerundet, bis x schliefSlich den Wert 0 erreicht hat und die Schleife abbricht. Je gro-
Ber n ist, desto haufiger wird also die Schleife durchlaufen. Da # beliebig grof} sein kann,
kann die Schleife beliebig oft durchlaufen werden. Unser Beweis soll aber nicht aus unend-
lich viel Text bestehen, also brauchen wir eine Methode, die Korrektheit des Algorithmus
zu begriinden, ohne fiir jeden einzelnen Schleifendurchlauf extra zu argumentieren.

KAPITEL 1 Algorithmen 45

Der Trick, den man in diesem Fall gewohnlich verwendet, heifst Induktionsbeweis. Die Idee
dabei ist, dass man wie folgt argumentiert:

»Wenn bis zum i-ten Schleifendurchlauf alles korrekt funktioniert hat, dann funktio-
niert auch im nachfolgenden i + 1-ten Schleifendurchlauf alles korrekt.«

Dabei muss man sich natiirlich erst einmal im Klaren dartiber sein, was es genau heifSen soll,
dass bei einem Schleifendurchlauf »alles korrekt funktioniert«. Hierzu verwendet man ge-
wohnlich eine sogenannte Schleifeninvariante. Das ist zum Beispiel eine Grofie, die sowohl
vor als auch nach jedem Schleifendurchlauf gleich bleibt, oder allgemein eine Aussage, die
sowohl vor als auch nach jedem Schleifendurchlauf giiltig ist. Im Fall der dgyptischen Mul-
tiplikation (also des Algorithmus Riddle weiter vorne in diesem Kapitel) konnten wir zum
Beispiel folgende Gleichung als Schleifeninvariante (SI) verwenden:

n-m=x-y+p
Der Korrektheitsbeweis lauft dann so:

1. Ganz am Anfang, also bevor die while-Schleife das erste Mal durchlaufen wird,
gilt die SI, denn es wird x « 1,y < m und p « 0 gesetzt, und das bedeutet, dass
n-m=x-y+pist (Induktionsanfang)

2. Angenommen, wir stehen am Anfang eines Schleifendurchlaufs, und bisher gilt
die SI. Wir miissen zeigen, dass die SI auch am Ende des Schleifendurchlaufs gilt
(Induktionsschritt). Zwei Fille sind zu unterscheiden (siehe Abbildung 1.7):

a. Fall 1: x ist am Anfang des Schleifendurchlaufs gerade. Dann wird x halbiert und
y verdoppelt, das Produkt x - y bleibt also gleich. Da sich p ebenfalls nicht dndert,
verdndert sich der Ausdruck x - y + p nicht, und die SI behalt auch nach dem
Schleifendurchlauf ihre Giiltigkeit.

b. Fall 2: x ist am Anfang des Schleifendurchlaufs ungerade. Nun wird beim Halbie-
ren von x abgerundet, und wie man in Abbildung 1.7 sehen kann, wird dadurch
das Produkt x - y um die schwarzen Késtchen kleiner. Diese gehen zum Gliick
nicht verloren, sondern werden zu p hinzugezéhlt. Am Ende der Schleife hat
sich x - y + p also nicht gedndert, die SI gilt somit immer noch.

3. Die while-Schleife endet, wenn x nicht mehr > 1 ist. Das passiert, sobald x = 0
geworden ist; und wenn x = 0 ist, dann ist auch x - y = 0. Da die SI iiber alle Schlei-
fendurchldufe hinweg bestanden hat, gilt sie auch jetzt noch, und somitist n - m =
x -y + p = p. Der Algorithmus liefert p als Ergebnis zuriick und berechnet somit
das Produkt aus # und m.

die Durchldufe einer Schleife hinweg die Giiltigkeit einer Schleifeninvariante be-
legen. Dabei ist eine Schleifeninvariante etwas, das tiber die Schleifendurchléufe
hinweg »invariant« ist, also gleich bleibt.

0 Korrektheitsbeweise von Algorithmen sind hdufig Induktionsbeweise, die tiber

46 TEIL| Grundbegriffe

Fall 10 x ist gerade

0og
EEE 0o0ooo
.,doog Ei> x)000000
ooo 2 000000
ooo 000000
ooo —_—
ooo 2y
——
y
Fall 2: x ist ungerade
ooo
00o0ooo
il x-1) OOOOOD
aooo 2 |O000Oooo
x\goe [, ‘280080
ooo 25
ooo
ooo
[] EEE
—— T
y

Abbildung 1.7: Die zwei Falle der agyptischen Multiplikation

Auf der Suche nach einem Korrektheitsbeweis konnen Schleifeninvarianten also niitzlich
sein. Dabei reicht es allerdings nicht aus, irgendeine Schleifeninvariante zu finden, denn
letztlich soll sie auch dazu geeignet sein, die Korrektheit des Algorithmus zu beweisen. Aber
wie findet man denn eine geeignete Schleifeninvariante? Sie ahnen es sicherlich: Auch dafiir
gibt es kein Patentrezept. Beim Fiihren von Beweisen sind Sie leider auf ihre eigene Kreati-
vitdt angewiesen.

